
A. Appendix
A.1. Method details
A.1.1 Semantic parser

To enable a rich complexity and semantic filtering, we built
a fast custom semantic parser that converts a given tex-
tual caption to a semantic graph similar to the one in Vi-
sual Genome [36]. In particular, we extract objects, their
parts, their attributes, and the actions that they are involved
in (see Figure 3 for example). The parser is built on top of
the English language dependency parser from Spacy [26]
combined with multiple rules to infer common object rela-
tions. The aim of the parser is high speed with high pre-
cision of common object relations such as ‘has attribute‘
and ‘has part‘ and basic ‘action‘ support. Below, we de-
scribe the structured relations that we extract from natural
language text.

We support the following semantic relations:

Object ( obj). We extract objects that are supposedly pre-
sented in an image. We consider nouns that are not at-
tributes of another noun (not part of a noun phrase). E.g. in
birthday cake and baby stroller, the nouns cake and stroller
are parsed as objects, and the nouns birthday and baby are
considered attributes. We do not consider proper nouns.

Attribute (has attr). Denotes attributes that characterize
an object or another attribute. For example, dark green,
would result in a fact green - has attr - dark, and yellow
candles results in candles - has attr - yellow.

Part (has part). Characterizes a visual part of an object.
E.g. cake with 21 yellow candles would result in a part fact
cake - has part - candles.

Action ( act). Verbs that do not entail attributes or parts
(e.g. forms of be, looks, seems, and have are excluded) are
considered actions. For actions, we also parse the subject
and object arguments.

Subject of an action (act has subj, is act subj). We use
the act has subj and is act subj relation to represent argu-
ments (nouns) that are the subject of an action. E.g. for the
text a person is eating an apple, we add the object-centric
and corresponding action-centric symmetric facts: person -
is subj act - eating and eating act has subj person.

Object of an action (act has obj, is act obj). We also
include the relations that specify the object arguments of
an action. E.g. for the text a person is eating an apple,
we add the object-centric and corresponding action-centric
symmetric facts: apple - is obj act - eating and eating
act has obj apple.

We recognize the following limitations of ours approach:

Semantic attributes. In this work, we focus on object-
centric visual and action characteristics and we do not pro-
cess spatial relations ( X next to Y) or additional action ar-
guments (read a book *in* the library). Spatial relations
and additional arguments of verbs usually involve more
complex semantic reasoning and require more robust ap-
proaches and task-specific models such as one trained on
Semantic Role Labeling which are usually compute-heavy.
We leave these for future work.

Dependency parser errors. In the current version of the
parser, we also parse potential attributes as actions, which
are not likely to be always visual. E.g. In the phrase “run-
ning person”, running is an action and an attribute, and we
parse them as such. However, sometimes the underlying
parser would also parse attributes in phrases such as “striped
mug” as verbs, where we process the attribute “striped” as
both an attribute and an action (without arguments).

A.1.2 Concept distillation

The teacher model is built by training linear classifiers -
which predict objects and attributes - on top of a frozen
SWAG [71] backbone. SWAG is trained in a weakly-
supervised manner by predicting hashtags from Instagram
images. We use the publicly available weights, and adopt
a training procedure that is similar to the one from SWAG
for learning the linear classifiers. The procedure for train-
ing the object classifier is as follows. First, we parse the
captions to extract nouns. Next, we canonicalize the nouns
via WordNet [52] synsets and remove ones which occur less
than 250 times in the dataset. The resulting vocabulary con-
tains ⇠10K unique synsets. Finally, we optimize the linear
layer’s weights through a cross-entropy loss. Each entry in
the target distribution of the cross-entropy is either 1/K or
0 depending on whether the corresponding synset is present
or not, where K is the number of synsets for that image. We
apply inverse square-root resampling of images to upsam-
ple the tail classes following [71]. The target length of the
dataset is set to 50 million samples during resampling . We
train the linear layer using SGD with momentum 0.9 and
weight decay 1e-4. The learning rate is set following the lin-
ear scaling rule: lr=0.001· bs

256 . To speedup training, we use
64 GPUs with batch size of 256 per GPU. The attribute clas-
sifiers are build in a similar way, but the WordNet adjective
synsets require additional filtering to remove non-visual at-
tributes, e.g., claustrophobic, experienced. Following [61],
we select the attributes based on their sharedness and visu-
alness. We rank the attributes based on the aforementioned
scores, and keep ⇠1200 attributes.



Table A.1. DiHT architecture hyperparameters.

Model Dim Vision Language
layers width heads layers width heads

B/32 512 12 768 12 12 512 8
B/16 512 12 768 12 12 512 8
L/14 768 24 1024 16 12 768 12

Table A.2. DiHT common hyperparameters.
Shared
Learning rate (LR) 1e-3
Warm-up 1%
Vocabulary size 49408
Temperature (init, max) ( 1

0.07 , 100.0)
Adam (�1, �2) (0.9, 0.98)
Adam ✏ 1e-6
High resolution LR 1e-4

Dataset specific LAION PMD

CD learning rate scale 10.0 1.0
CD weight decay scale 0.01 1.0
HN-NCE ↵ 1.0 0.999
HN-NCE � 0.25 0.5

LAION PMD

Model specific L/14 B/16,B/32 B/16,B/32

Batch size 98304 49152 32768
Weight decay 0.2 0.1 0.1

A.2. Training details
For our model architecture, we closely follow CLIP

by Radford et al. [62]. We utilize Vision Transformers
(ViT) [17] for images and Text Transformers [75] for cap-
tions. We experiment with 3 different architectures, denoted
as B/32, B/16, and L/14, where 32, 16, and 14 denote the
input image patch size. Other architecture scaling param-
eters are in Table A.1. For distillation and fine-tuning ex-
periments, we utilize the public SWAG-ViT models [71],
pre-trained with weak supervision from hashtags.

We use the Adam [33] optimizer with a decoupled
weight decay [48] and a cosine learning rate schedule [47].
Input image size is 224⇥224 pixels, for pre-training runs.
All hyperparameters are presented in Table A.2. They are
selected by training on a small scale setup, and reused for
other experiments. For objects and attributes classifiers in
concept distillation (CD), we found that scaling the learning
rate by 10.0 and weight decay by 0.01 gave better results.

We pre-train the models on 4B, 8B, 16B, or 32B pro-
cessed samples, depending on the experiment. For L/14 we
train at a higher 336px resolution for additional 400M sam-
ples, denoting this models as L/14@336. We trained L/14
for 6 days on 512 A100 GPUs with 16B processed samples
for a total of 7.4⇥ 104 GPU hours.

To accelerate training and save memory, we use mixed-
precision training [51]. For L/14 we use grad checkpoint-
ing [8] and BFLOAT16 [14,29] format, all the other models
are trained using FP16 [51] format. Contrastive loss is com-
puted on the local subset of the pairwise similarities [62].

A.3. Evaluation details

We evaluate our models on a zero-shot benchmark of
24 datasets: (i) 17 image classification: Birdsnap [3],
CIFAR10 [37], CIFAR100 [37], Caltech101 [19], Coun-
try211 [62], DTD [13], Flowers102 [54], Food101 [4], Ima-
geNet1K [65], OxfordPets [57], STL10 [15], SUN397 [79],
StanfordCars [35], UCF101 [72], HatefulMemes [32],
PascalVOC2007 [18], OpenImages [39]; (ii) 5 cross-
modal retrieval (text-to-image T2I, image-to-text I2T):
COCO [45], Flickr [59], LN-COCO [60], LN-Flickr [60],
Winoground [73]; (iii) 2 visual question answering:
SNLI-VE [80], VQAv2 [21]. Note that, cross-modal re-
trieval datasets have 2 tasks (T2I and I2T), so in total we
evaluate across 29 tasks.

We follow zero-shot CLIP benchmark7 implementation
for most of the datasets, and implement the ones that are
missing. For most image classification tasks we com-
pute Accuracy@1, except HatefulMemes where we com-
pute AUROC because it is binary classification, OpenIm-
ages where we compute FlatHit@1 following [77], and
PascalVOC2007 where we compute mean average preci-
sion (mAP) because it is multi-label classification. We use
the same prompt ensembling method as CLIP [62] to im-
prove zero-shot image classification. For cross-modal re-
trieval (T2I and I2T), we compute Recall@1. For COCO
and Flickr we apply a simple prompt pretext “a photo of
{caption}”, for LN-COCO, LN-Flickr, and Winoground
no prompt is applied. We cast visual question answering
(VQA) as binary prediction task and compute AP on the
cosine similarity between an image and a text (a hypothe-
sis or a question). For SNLI-VE, we take a subset which
has agreement among annotators, we use “entailement” and
“contradiction” as binary classes, and drop the “neutral”
class. For VQAv2, we take the subset with yes/no ques-
tions. No prompt is applied for SNLI-VE and VQAv2.

A.4. Additional ablations

Effect of dataset filtering. In Figure A.1 we observe
that gains from our proposed complexity, action, and text-
spotting (CAT) dataset filtering hold as we train for longer
training schedules. We ran small scale experiments with
several complexity filters (see Table A.3) and we found that
CAT with minimum complexity C1 performed the best.

Effect of top-k predicted objects and attributes. In Ta-
ble A.4, we show that our concept distillation approach is
quite robust to the choice of the number of predicted ob-
jects and attributes. For k = 10 strong accuracy is achieved
with a small increase in dataset memory.

7github.com/LAION-AI/CLIP benchmark

https://github.com/LAION-AI/CLIP_benchmark
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Figure A.1. Evaluating effect of using our LAION-CAT subset filtered on complexity (C), actions (A), and text spotting (T). Evaluation
performed on ViT-B/32 architecture trained for a varying number of processed samples.

Table A.3. Number of examples after filtering with different filters.

Filter # examples % of full
[69] C0 C1 C2 A T

2,121,505,329 100.00
X 1,983,345,180 93.49
X X 1,891,725,045 89.17
X X 1,709,522,548 80.58
X X 1,143,660,096 53.91
X X 691,535,901 32.60
X X X 642,162,957 30.27
X X X 487,493,190 22.98
X X X X 438,358,791 20.66

Table A.4. Evaluating effect of using different number of top-k
predicted objects and attributes. Evaluation on ViT-B/16 model
architecture trained for 8B processed samples on LAION-CAT.
Memory denotes storage needed to store predicted concepts.

top-k Memory IN COCO Flickr

T2I I2T T2I I2T

5 16.3GB 71.4 42.9 59.4 72.2 86.5
10 32.6GB 71.9 42.9 60.3 73.3 87.0
25 81.6GB 71.4 43.1 60.0 72.9 87.9

Effect of ↵ and � on HN-NCE. From intuition, one can
see that the term ↵ controls the mass of the positive align-
ment term in the loss function, and the term � controls the
difficulty of the negatives. The need for the term ↵ can
be attributed as follows. If there are false negatives within
the dataset, dampening the positive alignment term can pre-
vent the model from becoming overly discriminative with
the true and false positive pairs. Hence, we would like to re-
duce ↵ as the likelihood of having false positives increases
(e.g., smaller datasets, less noisy training). The need for �
is straightforward: higher � pushes the weighing function
to be “sharper”, with more mass on the hardest negatives.
Table A.5 shows the effect of different values of ↵ and � on
LAION-CAT.

Table A.5. Evaluating effect of different hyperparameters ↵ and �
for the HN-NCE loss. Evaluation on ViT-B/16 model architecture
trained for 16B processed samples on LAION-CAT.

↵ � IN COCO Flickr

T2I I2T T2I I2T

1 0 68.7 42.8 60.5 72.8 87.6
1 0.25 69.2 42.9 61.2 72.6 87.8
1 0.5 66.5 40.3 59.7 71.4 84.9

0.999 0.25 69.0 42.6 60.9 72.3 87.9
0.9 0.25 68.6 42.1 59.2 71.2 85.5

Table A.6. Evaluating linear probing with the complete training
set for ImageNet1K on the ViT-L/14 architecture.

Model Optimizer ImageNet-1K
Accuracy (%)

CLIP-L/14 @ 224px SGD 83.60
DiHT-L/14 @ 224px SGD 85.40
DiHT-L/14 @ 224px PGD 85.41

CLIP-L/14 @ 336px SGD 85.40
DiHT-L/14 @ 336px SGD 85.87
DiHT-L/14 @ 336px PGD 85.89

Additional results on few-shot probing. We examine the
performance of our models on linear probing with the full
training set for ImageNet1K [65]. We compare the perfor-
mance of DiHT-L/14 and CLIP-L/14 [62] architectures for
both the 224px and 336px input sizes in Table A.6. We
observe that the PGD approach with the DiHT model out-
performs prior work, and also find that there is no notable
difference in performance between SGD-trained and PGD-
trained models, as there is no need for regularization when
training with the full dataset. We reproduce the reported
numbers for CLIP [62] and train our models with a learning
rate of 24, no weight decay, and batch size of 96,000 for
160 epochs.



Table A.7. Zero-shot state-of-the-art dual-encoder models comparison. We evaluate CLIP [62] and OpenCLIP [27] using our codebase.
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ViT-B/32 @ 224

CLIP 40.3 89.8 65.1 83.9 17.2 43.8 66.6 83.9 63.4 87.4 97.2 62.3 59.7 64.2 58.1 84.2 27.8 31.4 49.0 59.5 79.9 16.8 24.6 30.2 38.1 28.1 27.4 77.6 57.3
OpenCLIP 50.5 93.6 75.8 86.4 16.7 56.1 71.7 82.7 66.6 90.6 96.6 68.5 86.0 66.1 53.4 85.4 34.6 39.0 56.7 65.7 81.7 29.5 35.1 44.0 51.4 32.0 30.2 78.6 59.3
DiHT 46.5 92.0 73.6 80.4 16.3 55.3 69.8 84.1 68.0 91.7 97.2 66.5 79.6 68.3 53.5 78.9 32.4 40.6 59.3 68.6 84.4 29.8 35.7 46.1 54.0 30.9 33.0 79.1 59.9

ViT-B/16 @ 224

CLIP 43.2 90.8 68.3 84.7 22.8 44.9 71.2 88.7 68.4 89.1 98.3 64.4 64.7 69.5 59.3 85.3 29.3 33.7 51.3 63.3 81.9 18.7 25.2 31.3 37.4 31.0 30.2 77.9 57.7
OpenCLIP 52.1 91.7 71.4 86.2 18.1 50.8 69.3 86.1 67.1 89.4 97.0 69.6 83.8 67.7 55.7 84.2 35.2 37.8 55.4 65.2 84.1 26.1 33.1 43.5 46.9 30.5 30.2 78.4 59.3
DiHT 54.5 92.7 77.5 81.2 19.1 59.4 70.5 89.1 72.2 92.7 98.2 68.4 86.0 70.3 56.2 79.5 34.6 43.3 60.3 72.9 89.8 32.4 38.2 52.9 57.7 32.0 33.4 80.8 60.3

ViT-L/14 @ 224

CLIP 52.5 95.6 78.2 86.7 31.9 55.5 79.1 93.1 75.6 93.5 99.4 67.6 77.8 77.0 60.4 85.5 30.6 36.5 54.9 66.1 84.5 20.8 28.6 36.2 44.2 31.9 32.0 78.2 58.4
OpenCLIP 62.9 96.6 83.4 88.0 26.3 62.9 75.5 91.0 75.2 93.2 98.9 74.3 92.6 75.2 55.1 87.5 38.0 46.2 64.3 75.4 90.4 34.6 39.9 50.9 57.7 33.4 36.4 80.8 60.0
DiHT 60.4 91.7 81.3 81.6 26.0 60.3 77.6 92.7 77.0 93.8 98.0 70.2 91.1 77.9 56.5 79.3 35.0 48.0 65.1 76.7 92.0 35.6 40.7 52.7 60.3 31.8 33.4 81.3 61.0

ViT-L/14 @ 336

CLIP 53.7 95.0 77.0 87.2 34.4 56.0 78.6 93.8 76.6 93.8 99.5 68.7 79.2 77.6 61.6 86.2 31.8 37.7 57.1 68.6 86.6 20.2 28.6 38.1 45.7 32.3 21.4 78.7 58.5
DiHT 62.0 92.2 81.2 82.4 27.8 61.1 77.0 92.9 77.9 94.0 98.2 71.2 91.5 77.7 56.3 81.0 36.5 49.3 65.3 78.2 91.1 36.7 41.2 54.5 61.6 35.0 38.5 81.7 61.4

Additional results on zero-shot benchmark. We report
performance of CLIP [62], OpenCLIP [27], and DiHT on
all 29 zero-shot tasks in Table A.7.

A.5. Contrastive Alignment with Hard Negatives
Convergence guarantees

Proposition 1. Let L
?(�i,�t) = supq2⇧ L(�i,�t, q).

Then for any measurable �i,�t : X ! Sd�1 and
⌧ = O(1) we observe the convergence L(�i,�t, q) !

L
?(�i,�t) as � ! 1.

Proof. Follows from Proposition 6 of [63] with the loss
function L(�i,�t, q�) defined as follows for any �.

L(�i,�t, q�) =

log
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