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A. Appendix Ablation Study

We additionally report the ablation study for both the
Bone-US dataset and MS-MRI [4] dataset. As we can ob-
serve from Table 1 and Table 2 that CIMD improves the
diffusion model performance in terms of both GED and
CI scores. We visualize the ablation study results for the
LIDC-IDRI dataset [1] in Figure 1. DDPM-det-Seg is the
diffusion model [6, 9] trained using the average of all four
segmentation masks. Although the sampling process is
stochastic, we see minimal changes in generated segmen-
tation masks. DDPM-Prob-Seg is trained using all the seg-
mentation masks. In other words, different segmentation
masks are used in each forward pass for an input image. It
can be seen that although there are some variations in seg-
mentation masks, most of them are empty. In contrast to
that, CIMD is able to segment the lesion as well as produce
different segmentation masks that match the ground truth
distributions. This proves DDPM itself is not able to model
the stochasticity of the dataset alone.

Table 1. Ablation study: we perform an ablation study on the
Bone-US dataset to better understand the contributions incorpo-
rated in the CIMD method.

Method GED (↓) CI (↑) Dicemax (↑)
DDPM-det-Seg [9] 0.887 0.673 0.626
DDPM-Prob-Seg 0.798 0.675 0.627

CIMD (Ours) 0.295 0.757 0.889

Table 2. Ablation study: We perform an ablation study on MS-
MRI dataset [4] to better understand the contributions incorporated
in the CIMD method.

Method GED (↓) CI (↑) Dicemax (↑)
DDPM-det-Seg [9] 0.799 0.507 0.497
DDPM-Prob-Seg 0.804 0.509 0.499

CIMD (Ours) 0.733 0.560 0.562

B. Appendix Network Architecture

AMN and ACN architecture. AMN (Ambiguity Model-
ing Network) and ACN (Ambiguity Controlling Network)
have the same architecture, which is an encoder consisting
of repeated application of four 3x3 convolution layers with
32, 64, 128, and 192 filters each followed by a rectified lin-
ear unit (ReLU) and a 2x2 average pooling with stride 2
for down-sampling. Then we add a 1x1 convolution layer
that takes the global average pooled feature maps from the
previous layer as input and predicts the Gaussian distribu-
tion which is parameterized by mean and variance. AMN
takes the concatenation of the input image with the ground
truths as input and predicts the Gaussian distribution of the
segmentation masks conditioned on an input image. ACN
takes the concatenation of the input image with the predic-
tions as input and predicts the Gaussian distribution of pre-
dicted masks conditioned on the input image.

C. Appendix Training details

β Parameter. The regularization parameter β is empiri-
cally chosen to be 0.001, as higher β overwhelms the other
loss terms and produces noisy outputs. Lower β that 0.001
ignores the KL divergence between ACN and AMN, hence
network acts like a regular diffusion model with minimal
variations in outputs.

D. Appendix Qualitative Result Analysis

Average Segmentation Quality. We visualize 16 sam-
ples for each input image from the test set distribution to
assess their quality. For both Prob-Unet [5] and PHi-Seg
[2] we can observe from Figure 4 and Figure 5 that al-
though there are some segmentation masks that are close to
ground truth (therefore, not affecting the quantitative metric
much), not all segmentation masks are complete or consis-
tent. This happens because they are sampled using differ-
ent latent variables which might not always produce high-
fidelity samples. However, CIMD is observed to consis-
tently produce high-fidelity samples as the model doesn’t
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Figure 1. Visualization of ablation study for LIDC-IDRI [1] dataset. DDPM-det-Sg is trained using the average of all segmentation masks
of one input image. DDPM-Prob-Seg is trained using all segmentation masks of one input image.

depend on latent variables from a prior model for segmen-
tation.

Empty Segmentation in Bone-US dataset. In ultra-
sound, the high acoustic impedance mismatch between soft
tissue and bone surface produces a high contrast curve-
linear region. This high-contrast region indicates the pres-
ence of the bone surface. However, this response can be
extremely noisy due to the nature of ultrasound imaging.
In our dataset, some ultrasound scan doesn’t have any bone
surface response, hence all four raters annotated them as
empty masks. From Figure 6 we can observe that some la-
tent variables from both Prob-Unet and PHi-Seg struggle to
ignore random contrast in ultrasound imaging, and segment
those regions as bone surfaces. On the other hand, CIMD
produces much more consistent results when the bone sur-
face is not present with minimal error.

Fine Lesion segmentation. As MS-MRI [4] dataset
contains images with very fine lesions, it is difficult for
other networks to segment it. However, from Figure 2 it can
be observed that CIMD is able to segment even the finest
lesion from MRI scans.

E. Choice of Distribution

Table 3. Quantitative results using LIDC-IDRI [1] dataset us-
ing CIMD with axis-aligned Gaussian (CIMD-AA) and full-
covariance matrix (CIMD-FC).

Method GED (↓) CI (↑) Dicemax (↑)
CIMD-FC [9] 0.447 0.774 0.718

CIMD-AA 0.321 0.759 0.915

In this section, we discuss the choice of distribution for
AMN and ACN. The previous approach modeled the am-
biguity of the segmentation masks using multivariate Gaus-
sian with diagonal covariance matrix [2, 5]. It has been as-
sumed that the choice of a simple distribution restricts the
sample diversity [7]. It has been hypothesized that the use
of a full covariance matrix will produce a more diverse sam-
ple [3]. Generalized probabilistic U-net proposed the use of
a full covariance matrix to model the distribution of seg-
mentation masks [3]. Since the constraint of a valid covari-
ance matrix is difficult to impose while training a network,
the covariance matrix Σ is built using Cholesky decompo-
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Figure 2. Qualitative comparison of MS-MRI [4] dataset between Probabilistic U-net [5], PHi-Seg [2] and CIMD. We can observe that MS
lesions have a very fine structure, hence both Prob-Unet and PHi-Seg are both failing to capture them. On the other hand, CIMD is able to
capture even the smallest lesion that is present in the scan.
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Figure 3. Comparative qualitative analysis between CIMD-FC and
CIMD-FC. CIMD-FC denotes CIMD with a full covariance matrix
and CIMD-AA denotes CIMD with axis-aligned Gaussian.

sition L [8].
Σ = LLT (1)

Here, L is a positive valued diagonal lower-triangular ma-
trix, which is computed by a neural network. The samples
are drawn using the reparametrizing trick,

z = µ+ L ∗ ϵ, ϵ ∼ N (0, I) (2)

Hence, we model the Gaussians of AMN and ACN with
a full covariance matrix to observe its effect in the CIMD
network. Although the CIMD with full covariance matri-
ces were able to produce outputs with high diversity, they
are always not close to ground truth distribution which can
be observed from the Dmax in Table 3. Moreover, CIMD

with a full covariance matrix produces more coarse outputs
hence the combined sensitivity is higher in this case. This
skews the CI score, however, from Dmax and qualitative re-
sults in Figure 3 we can observe that axis-aligned performed
better.
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Figure 4. Comparative qualitative analysis with the two baseline methods Probabilistic U-net [5] and PHi-Seg [2] for LIDC-IDRI [1]
dataset. Here we show 16 samples from each model. The red boxes indicate incomplete or noisy segmentation masks. Here we can
observe some incomplete or noisy output from baseline methods while all 16 samples from CIMD have high fidelity.
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Figure 5. Comparative qualitative analysis with the two baseline methods Probabilistic U-net [5] and PHi-Seg [2] for Bone-US dataset.
Here we show 16 samples from each model. The red boxes indicate incomplete or noisy segmentation masks. Here we can observe some
incomplete or noisy output from baseline methods while all 16 samples from CIMD have high fidelity.
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Figure 6. Comparative qualitative analysis with the two baseline methods Probabilistic U-net [5] and PHi-Seg [2] for blank segmentations
from all experts in Bone-US dataset. We sample 16 masks from each model. We can observe that for blank annotation Prob-Unet and
PHi-Seg both struggles as the noisy contrast resemble bone surface response in ultrasound images.
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