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A. Datasets and the Evaluation Protocols
In this section, we provide the details of datasets and

their evaluation protocols (see Section 4.1 of the main
text). We perform experiments on eight widely used pub-
lic image datasets, namely, MIT Indoor [67], Stanford Cars
[58], Caltech-UCSD Birds (CUB 200-2011) [71], FGVC-
Aircraft [65], DTD [5], iNaturalist [40], mini-ImageNet
[41] and ImageNet100 [70] to demonstrate the performance
of our methods. Figure 4 shows the sample images from the
datasets. Further details are given below.
MIT Indoor dataset is one of the most widely used datasets
in the literature for scene classification. It has a total of
15,620 images and 67 classes. Each image class contains a
minimum number of 100 images. The images are collected
from various types of stores (e.g., grocery, bakery), private
places (e.g., bedroom and living room), public places (e.g.,
prison cell, bus, library), recreational places (e.g., restau-
rant, bar) and working environments (e.g., o�ce, studio).
Caltech-UCSD Birds or simply ‘Birds’ is one of the
most reported datasets in fine-grained image classification
(FGIC) literature. It has a total of 11,788 images and 200
image classes. There are subtle di↵erences between these
classes and they are hard to be distinguished by human ob-
servers. This dataset comes with bounding box annotations;
however, we do not use any annotations in our experiments.
FGVC-Aircraft or ‘Aircraft’ dataset is widely used by
many recent FGIC methods. It has only 10,000 images dis-
tributed among 100 aircraft classes, and each class has pre-
cisely 100 images. Similar to Birds, the classes have subtle
di↵erences between them and are hard for humans to distin-
guish from each other.
Stanford Cars or simply ‘Cars’ has a total of 16,185 im-
ages and 196 classes. The classes are organized as per the
car production year, car manufacturer and car model. Cars
dataset has relatively smaller objects, i.e., cars, than those of
the airplane dataset. Furthermore, the objects are appeared
in cluttered backgrounds.

*Corresponding author. Code: https://github.com/csiro-robotics/iSICE.

Describable Texture Dataset (DTD) has a total of 5,640
images and 47 classes. The images in all classes represents
about 95% of their class attributes. For evaluation, it has 10
splits and each split has an equal number of images from
each class for training, validation and test sets. The aver-
age performance across all splits is reported. We used both
training and validation sets for training.
iNaturalist is a large fine-grained dataset. It has a total of
675,170 images and 5,089 classes. The classes are from
12 super-classes. The dataset is challenging due to its high
class-imbalance. We use the training strategy and train-test
splits specified in the original paper [40].
mini-ImageNet is a subset of ImageNet-1K dataset first
proposed by Ravi et al. [68]. It contains a total of 60,000
images and 100 classes. We use the original 224⇥224 image
resolution on this dataset. Since the dataset was originally
proposed by the authors for few-shot learning tasks, we di-
vide the dataset in a 90:10 ratio for training and testing. We
report the average accuracy of 5 runs.
ImageNet100 is a subset of ImageNet-1K Dataset from Im-
ageNet Large Scale Visual Recognition Challenge 2012. It
contains random 100 classes proposed by Tian et al. [70].
ImageNet100 train and validation sets contain 1300 and 50
images per class, respectively. We use the original 224⇥224
image resolution on this dataset.

Table 6 gives a more concise summary of the datasets.
We train our method using the respective training splits pro-
vided by the original authors of the datasets. For evalua-
tion, we again use the respective original test splits. This
also applies to all of the methods we have compared in the
main text. During training, for all datasets except iNatural-
ist, we resize our images to 448 ⇥ 448 following the work
of [59, 61] and use only horizontal flipping as a data aug-
mentation. For iNaturalist, as in original paper, we resize
images to 299 ⇥ 299.

B. Training iSICE with Di↵erent Backbones
This section provides the settings of training di↵erent

backbones with iSICE mentioned in Section 4.1 of the main
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Figure 4. Sample images from the datasets used in our experiments. Rows 1, 2, 3, 4, 5 and 6 have the images from MIT Indoor, Caltech-
UCSD Birds, FGVC-Aircraft, Stanford Cars, ImageNet100/mini-ImageNet and DTD datasets, respectively.

Dataset Total classes Total images Predefined protocol Major di�culty
Training images Testing images

MIT Indoor 67 6,700 5,360 1,340 di�cult environment
Birds 200 11,788 5,994 5,794 subtle class di↵erence
Aircraft 100 10,000 6,600 3,400 subtle class di↵erence
Cars 196 16,185 8,144 8,041 cluttered background
DTD 47 5,640 4512 1128 complex structure
iNaturalist 5,089 675,170 579,184 95,986 class imbalance
mini-ImageNet 100 60,000 54,000 6,000 di�cult environment
ImageNet100 100 1,35,000 130,000 5,000 di�cult environment

Table 6. Summary of datasets.



iSICE

Dataset Backbone iSQRT-COV [23] Precision ⌦ Sparsity constant � Mean ± Std.
(iSICE)1.0 0.5 0.1 0.01 0.001 0.0001 0.00001

MIT VGG-16 76.12 80.15 77.46 78.13 78.13 78.66 78.58 78.96 78.96 78.41±0.54

ResNet-50 78.81 80.75 78.43 80.75 80.45 80.52 80.90 80.37 81.34 80.39±0.93

Airplane VGG-16 90.01 89.44 92.26 92.71 92.77 92.23 92.83 92.74 92.44 92.56 ±0.25

ResNet-50 90.88 91.15 92.89 92.65 92.89 92.74 92.83 92.56 92.56 92.73±0.14

Birds VGG-16 84.47 83.36 86.04 86.47 86.35 86.52 85.59 86.31 86.28 86.22±0.32

ResNet-50 84.26 84.67 84.62 85.16 85.30 85.90 86.05 85.90 85.59 85.50±0.51

Cars VGG-16 91.21 92.04 93.60 93.98 94.06 94.03 93.88 93.91 93.50 93.85±0.22

ResNet-50 92.13 91.99 93.01 93.36 93.69 93.51 93.22 93.72 93.40 93.41±0.25

Table 7. Performance of iSICE on changing the sparsity constant � while fixing the learning rate ⌘ and the number of iterations N to 1.0
and 5, respectively. The mean and standard deviation (std.) of the classification performance resulted by iSICE are also shown for a better
understanding of sparsity constant changes in iSICE. Results are shown on multiple datasets with VGG-16 and ResNet-50 backbones. The
best results in each row are highlighted with boldface.

iSICE

Dataset Backbone iSQRT-COV [23] Precision ⌦ Learning rate ⌘ Mean ± Std.
(iSICE)0.001 0.01 0.1 1.0 5.0 10.0 20.0

MIT VGG-16 76.12 80.15 78.81 79.33 77.91 78.66 78.28 80.52 77.76 78.75±0.95

ResNet-50 78.81 80.75 80.82 80.82 80.75 80.52 81.19 79.33 78.96 80.34±0.85

Airplane VGG-16 90.01 89.44 92.32 92.38 92.98 92.23 93.28 92.50 92.26 92.56±0.41

ResNet-50 90.88 91.15 92.77 93.01 92.89 92.74 92.65 92.95 92.38 92.77±0.21

Birds VGG-16 84.47 83.36 86.54 86.31 86.40 86.52 86.73 86.59 86.45 86.51±0.14

ResNet-50 84.26 84.67 85.69 85.88 85.81 85.90 85.59 85.71 85.97 85.79±0.14

Cars VGG-16 91.21 92.04 93.83 93.65 93.69 94.03 93.66 93.82 93.93 93.80±0.14

ResNet-50 92.13 91.99 93.60 93.57 93.32 93.51 93.57 93.35 93.60 93.50±0.12

Table 8. Performance of iSICE on changing the learning rate ⌘ while fixing the sparsity constant � and the number of iterations N to 0.01
and 5, respectively. The mean and standard deviation (std.) of the classification performance resulted by iSICE are also shown for a better
understanding of learning rate changes in iSICE. Results are shown on multiple datasets with VGG-16 and ResNet-50 backbones. The best
results in each row are highlighted with boldface.

text. We train iSICE with following backbones: VGG-16
[69], ResNet-50 [57], ConvNext-T [63], and Swin-T [62].
All backbones are pre-trained on ImageNet-1k [56]. We use
the pre-trained weights provided by the torchvision 0.13.0
package that comes with PyTorch library [66].

All backbones produce more than 256 feature chan-
nels. In the recent literature on covariance representation
[59, 60, 72], a common practice is to experiment with 256
channels for e�ciency and compactness of final representa-
tion. To compare our method with the recent literature, we
also conducted most of our experiments with 256 channels.
Additionally, we conducted experiments with 512 channels
to demonstrate the e↵ectiveness of the proposed iSICE in
working with a larger number of feature channels (provided

in Table 3 in the main text). For reducing the original num-
ber of feature channels from 2048/512 to 256, we add a 1⇥1
convolution layer, batch normalisation and ReLU activation
layers after the last convolution layer (in case of CNN mod-
els) and transformer block (in case of Swin Transformer).
We then compute iSICE with the reduced feature channels,
and we only use the upper-triangular entries of the symmet-
ric matrix as a representation.

We fine-tune all backbones for 50-100 epochs with
AdamW optimiser [64]. We fine-tune VGG-16 and ResNet-
50 CNN backbones with an initial learning rate of 0.00012,
and ConvNext-T CNN and Swin-T transformer backbones
with an initial learning rate 0.00005. For all backbones, we
decrease the learning rate by a factor of 10 at the 15th and



Method Iter. N Based on VGG-16 backbone Based on ResNet-50 backbone

MIT Airplane Birds Cars MIT Airplane Birds Cars

iSQRT-COV [23] 5 76.12 90.01 84.47 91.21 78.81 90.88 84.26 92.13
Precision ⌦ 7 80.15 89.44 83.36 92.04 80.75 91.15 84.67 91.99

iSICE
2 78.28 92.68 86.66 93.63 80.52 92.89 93.68 85.92
5 78.66 92.23 86.52 94.03 80.52 92.74 93.51 85.90
10 78.36 92.56 86.62 93.89 80.22 92.74 93.30 85.74

Mean±Std. (iSICE) 78.4±0.2 92.5±0.2 86.6±0.1 93.9±0.2 80.4±0.2 92.8±0.1 93.5 ±0.2 85.6 ± 0.1

Table 9. Performance of iSICE on changing number of iterations N while fixing sparsity constant � and learning rate ⌘ to 0.01 and 1.0,
respectively. The mean and standard deviation (std.) of the classification performance resulted by iSICE are also shown (only single
precision is shown for ease of presentation) for a better understanding of number of iterations changes in iSICE. Results are shown on
multiple datasets with VGG-16 and ResNet-50 backbones. The best results in each column (including those that surpass the performance
of iSQRT-COV) are highlighted with boldface.

30th epochs. Depending on the dataset and backbones, our
fine-tuning process lasts for about 3-8 hours with four P100
GPUs, 12 CPUs and 12GB memory. We provide the source
code of our method as supplement material for reproducing
the experiments.

C. Robustness of iSICE to Hyper-parameters
This section includes the experiments mentioned in “Ro-

bustness of iSICE on Hyper-parameter Changes” of Section
4.2 of the main text. We have conducted comprehensive ex-
periments with the hyper-parameter range mentioned in the
main text to demonstrate the robustness of iSICE with re-
spect to hyper-parameter changes. In Tables 1, 2 and 3 of
the main text, we showed the results obtained by using a
consistent hyper-parameter set across di↵erent backbones
and datasets to avoid overfitting. Specifically, we showed
the results obtained with the median (marked with bold-
face) of the hyper-parameter range, i.e., � = {1.0, 0.5, 0.1,
0.01, 0.001, 0.0001, 0.00001}, ⌘ = {0.001, 0.01, 0.1, 1.0,
5.0, 10.0, 20.0}, and N = {1, 5, 10}.

Below we show some experiments to demonstrate the ro-
bustness of iSICE with respect to hyper-parameter changes.
Specifically, we analyse the performance of iSICE when
one hyper-parameter changes while the other two are fixed.
For consistency, we experiment with the same hyper-
parameters used for reporting the performance of iSICE
across the tables of the main text, i.e., � = 0.01, ⌘ = 1.0,
and N = 5. As mentioned above, we will fix two of them
and vary the third one to observe its impact to the perfor-
mance of the proposed iSICE. All of our experiments are
compared with COV and Precision⌦methods (please refer
to the main text for details).

Robustness against sparsity constant changes. In this ex-
periment, we change the sparsity constant � while keeping
the learning rate ⌘ and the number of iterations N fixed.

Our experimental results are shown in Table 7. From the re-
sults, we can clearly see that across all datasets, the change
of sparsity constants does not significantly impact the per-
formance of iSICE. The VGG-16 based iSICE shows more
robustness toward sparsity constant changes. The classi-
fication performance for the MIT dataset appears to have
been more significantly impacted due to sparsity constant
changes than the other three fine-grained datasets. Specifi-
cally, on the three fine-grained datasets, the standard devia-
tion of results is significantly low, i.e., less than 0.51 when
compared with the mean values ranging between 85.50 to
93.85. This confirms that our method can be used for
fine-grained image classification purposes with a reasonable
range of sparsity constant.
Changing the learning rate. In this experiment, we change
the learning rate while keeping the sparsity constant and
the number of iterations fixed. Our experimental results are
shown in Table 8. From the results, we can see that across
all datasets, the change in learning rate does not signifi-
cantly a↵ect the performance. Two datasets, namely Birds
and Cars, have shown less impact on performance, as sug-
gested by the standard deviation of 0.14 or lower. The other
two datasets also show a low standard deviation of results.
The low standard deviation across a wide range of learning
rates (from 0.001 to 20.0) shows that our method is robust
to the changes in learning rate and a small learning rate such
as 0.01 can be used for computing SICE with our method.
Changing the number of iterations. Below we change the
number of iterations while keeping the sparsity constant and
the learning rate fixed. Our experimental results are shown
in Table 9. The results show that regardless of the CNN
backbones used, the change in the number of iterations can
vary the performance only up to 0.20. It is also noticeable
that our method is able to give good performance even with
two iterations only. This experiment shows that our method
is not sensitive to the changes in the number of iterations.



D. iSICE with Learning Rate and Sparsity
Modulators

This section provides additional experiments on iSICE
with MLP modulators introduced in “iSICE with learning
rate and sparsity modulators” of Section 4.2 of the main
text. In Table 4, the CNN feature maps with average pool-
ing were used to learn on-the-fly the learning rate and spar-
sity. In Table 10, we provide an additional experiment with
MLP when both r1 from Alg. 2 and average-pooled fea-
ture maps are used, i.e., concatenated before passing them
into the modulator. The combination of r1 from Alg. 2 and
average-pooled feature maps further improve the classifica-
tion performance of iSICE.

Method MIT Airplane Birds Cars ImageNet100

iSICE 80.5 92.7 85.9 93.5 74.8
iSICE+MLP 81.3 93.4 86.1 93.9 76.3
iSICE+MLP⇤ 81.8 93.8 86.4 93.9 77.1

Table 10. Comparison between the classification performance
of iSICE, iSICE+MLP and iSICE+MLP⇤ (improved variant) on
ResNet-50. Results of iSICE+MLP in second row use X to
compute learning rate and sparsity with modulators. Results of
iSICE+MLP⇤ in the third row use a concatenation of both X and
�1 from Alg. 2 to compute on-the-fly learning rate and sparsity by
MLP-based modulators.

E. Memory Consumption
This section describes memory consumption on iSICE

mentioned. Algorithm 2 stores the d ⇥ d matrices of ⌃, Si,
S+i and S�i , etc. The memory complexity of Algorithm 2
is approximately O

�
d2(N+Ns)

�
, where d denotes the chan-

nel size, N is iSICE iterations, and Ns is Newton-Schulz
iterations. For typical d = 256, N = 5, Ns = 5, iSICE uses
approximately 3⇥10⇥8⇥2562 = 0.012 GB memory which
is a tiny fraction of memory that the backbone consumes.

F. Visualisation of Learned Feature Maps
Below we visualize the convolutional feature maps

learned by the CNN model with di↵erent methods. We ex-
tract feature maps from the last convolution layer and per-
form average pooling on them. We convert the pooled fea-
ture map to a heatmap and draw it over the input image. The
colour in the heatmap ranges from blue to red, blue indicates
cold and red indicates hot. Fig. 5 suggests that with iSICE,
the model focuses well on the key parts of car to extract
features for classification. GAP (global average pooling)
overly focuses on entire foreground, iSQRT focuses poorly,
while iSICE lets us control the degree of ‘focus’ by control-
ling sparsity.

Figure 5. Visualisation of learned convolutional feature maps from
Cars dataset with ResNeXt-101 backbone. From left: Input image,
GAP, iSQRT-COV, Precision Matrix and iSICE.
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