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Figure 1. 576 randomly generated, non-cherry-picked images produced by our system (Part 1 of 4). Images are compressed due to space
constraints - please see infinigen.org
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Figure 2. 576 randomly generated, non-cherry-picked images produced by our system (Part 2 of 4). Images are compressed due to space
constraints - please see infinigen.org
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Figure 3. 576 randomly generated, non-cherry-picked images produced by our system (Part 3 of 4). Images are compressed due to space
constraints - please see infinigen.org
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Figure 4. 576 randomly generated, non-cherry-picked images produced by our system (Part 4 of 4). Images are compressed due to space
constraints - please see infinigen.org
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Real Images of Natural Scenes. Because images from
Infinigen consist of entirely of natural scenes and are de-
void of any human-made objects, we expect models trained
on Infinigen data to perform better on images with natural
environments and worse on images without (e.g. indoor
scenes). However, quantitative evaluation on real-world nat-
ural scenes is currently infeasible because there does not
exist a real-world benchmark that evaluates depth estima-
tion for natural scenes. Existing real-world benchmarks
consist almost entirely of images of indoor environments
dominated by artificial objects. In addition, it is challeng-
ing to obtain 3D ground truth for real-world natural scenes,
because real-world natural scenes are often highly complex
and non-static (e.g. moving tree leaves and animals), making
high-resolution laser-based 3D scanning impractical.

Due to the difficulty of obtaining 3D ground truth for real
images of natural scenes, we perform qualitative evaluation
instead. We collected high-resolution rectified stereo im-
ages of real-world natural scenes using the ZED 2 Stereo
Camera [ 1]] and visualize the predicted disparity maps from
RAFT-Stereo [[16]] in Fig.[7| Our results show that a model
trained entirely on synthetic scenes from Infinigen can per-
form well on real images of natural scenes zero-shot. The
model trained on Infinigen data produces noticeably better
results than models trained on existing datasets, suggesting
that Infinigen is useful in that it provides training data for a
domain that is poorly covered by existing datasets.
Middlebury Dataset. We evaluate our trained model on
the Middlebury Dataset [25[, which is a standard evaluation
benchmark for stereo matching. It consists of megapixel
image-pairs of cluttered indoor spaces, 10 with public
ground-truth and 10 without. This benchmark is challenging
due to its abundance of objects, textureless surfaces, and
thin structures. In Tab. 2] we see that our Infinigen-trained
model struggles on images with exclusively artificial objects
but performs well on the only image with natural objects
(Jadeplant). In Fig[8] we qualitatively evaluate our model on
Middlebury images without public ground-truth and observe
that our model generalizes well to the natural scenes.

Training Dataset ‘ Bad 3.0 (%) | ‘ # Image Pairs

InStereo2K [2] 25.282 2K
FallingThings [26] 12.199 62K
Sintel-Stereo [5] 10.253 2K
HR-VS [28] 9.296 780
Li et al. [15] 9.271 177K
SceneFlow [18] 7.837 35K
TartanAir [27] 6.504 296K
Ours (Infinigen 30K) 5.527 31K

Table 1. Performance on 400 independent Infinigen evaluation
scenes. No assets are shared between our Infinigen training and
evaluation scenes.

Synthetic Images of Natural Scenes. Although quantita-

tive evaluation is not currently feasible on real-world natural
scenes, it can be done using synthetic natural scenes from
Infinigen, with the caveat that we rely on the assumption
that performance on Infinigen images is a good proxy to real-
world performance, as suggested by the qualitative results
in Fig.[7] In Tab.[I] we evaluate our Infinigen-trained model
on an independent set of 400 image pairs from Infinigen.
No assets are shared between our training and evaluation
sets. Tab.|l|also compares the model trained on Infinigen
to models trained on other datasets. We see that the model
trained on Infinigen data has a significant lower error than
those trained on other datasets. These quantitative results
suggest that the distribution of Infinigen images is signifi-
cantly different from existing datasets and that Infinigen can
serve as a useful supplement to existing datasets.

3. Dataset Generation
3.1. Image Rendering

We render images using Cycles, Blender’s physically-
based path tracing renderer. Cycles individually traces pho-
tons of light to accurately simulate diffuse and specular
reflection, transparent refraction and volumetric effects. We
render at 1920 x 1080 resolution using 10, 000 random sam-
ples per-pixel.

3.2. Ground Truth Extraction

We develop custom code for extracting ground-truth di-
rectly from the geometry. Prior datasets [5,9H11}[15]] rely
on blender’s built-in render-passes to obtain dense ground
truth. However, these rendering passes are a byproduct of the
rendering pipeline and not intended for training ML models.
Specifically, they are incorrect for translucent surfaces, volu-
metric effects, or when motion blur, focus blur or sampling
noise are present.

We contribute OpenGL code to extract surface normals,
depth, segmentation masks, and occlusion boundaries from
the mesh directly without relying on blender.

Depth. We show several examples of our depth maps in
Fig. [0l In Fig. we visualize the alternative approach
of naively producing depth using blender’s built-in render
passes.

Occlusion Boundaries. We compute occlusion boundaries
using the mesh geometry. Blender does not natively produce
occlusion boundaries, and we are not aware of any other
synthetic dataset or generator which provides exact occlusion
boundaries.

Surface Normals. We compute surface normals by fitting a
plane to the local depth map around each pixel. Sampling
the geometry directly instead can lead to aliasing on high-
frequency surfaces (e.g. grass).

The size of the plane used to fit the local depth map
is configurable, effectively changing the resolution of the



Training Dataset ‘ Adirondack Jadeplant Motorcycle Piano Pipes Playroom Playtable Recycle Shelves Vintage | Avg
FallingThings [26 83 433 12.3 182 253 29.7 50.0 10.4 433 45.6 28.6
Sintel-Stereo [5 35.7 62.9 31.1 24.1 319 41.7 60.1 30.8 55.8 76.1 45.0
HR-VS [28] 435 432 17.0 29.6 321 34.6 68.4 24.7 574 349 385
Lietal [15] 23.9 80.2 40.7 320 403 49.1 67.5 36.6 51.7 423 46.4
SceneFlow [18] 7.4 413 14.9 162 333 18.8 38.6 10.2 39.1 29.9 25.0
TartanAir [27 15.5 45.1 18.1 129 284 25.6 51.0 20.9 49.1 28.2 29.5
InStereo2K [2 17.1 59.7 21.3 238 358 33.9 36.4 20.0 334 44.1 325
Ours (Infinigen 30K) 74 35.2 15.2 207 247 29.3 50.0 12.6 55.1 46.9 29.7

Table 2. Bad 3.0 (%) | error on the Middlebury [25]] validation set. Infinigen helps models generalize to images with natural objects (e.g.
Jadeplant). On the other hand, natural objects contain very few planar or texture-less surfaces; models trained exclusively on natural objects

can generalize less well on indoor datasets like Middlebury.

surface normals. We can also configure our sampling
operation to exclude values which cannot be reached from
the center of each plane without crossing an occlusion
boundary; planes with fewer than 3 samples are marked
as invalid. We show these occlusion-augmented surface
normals in Fig. [0] These surface normals appear only
surfaces with sparse occlusion boundaries, and exclude
surfaces like grass, moss, lichen, etc.

Segmentation Masks. We compute instance segmentation
masks for all objects in the scene, shown in Fig.[9] Object
meta-data can be used to group certain objects together arbi-
trarily (e.g. all grass gets the same label, a single tree gets
one label, etc).

Customizable. Since our system is controllable and fully
open-source, we anticipate that users will generate count-
less task-specific ground truth not covered above via simple
extensions to our codebase.

3.3. Runtime

We benchmark Infinigen on 2 Intel(R) Xeon(R) Silver
4114 @ 2.20GHz CPUs and 1 NVidia-GPU (one of GTX-
1080, RTX-[2080, 6000, a6000] or a40) across 1000 inde-
pendent trials. We show the distribution in Fig. [12] The
average wall time to produce a pair of 1080p images is 3.5
hours. About one hour of this uses a GPU, for rendering
specifically. More CPUs per-image-pair will decrease the
wall-time significantly as will faster CPUs. Our system also
uses about 24Gb of memory on average.

Pre-generated Infinigen Data. To maximize the accessi-
bility of our system we will provide a large number of pre-
generated assets, videos, and images from Infinigen upon
acceptance.

4. Interpretable Degrees of Freedom

We attempted to estimate the complexity of our procedu-
ral system by counting the number of human-interpretable
parameters, as shown in the per-category totals in Table 2
of the main paper. Here, we provide a more granular break
down of what named parameters contributed to these results.

Counting Method We seek to provide a conservative es-
timate of the expressive capacity of our system. We only
count distinct human-understandable parameters. We also
only include parameters that are useful, that is if it can be
randomized within some neighborhood and produce notice-
ably different but still photorealistic assets. Each row of
Tabs. gives the names of all Intepretable DOF that are
relevant to some set of Generators.

We exclude trivial transformations such as scaling, rotat-
ing and translating an asset. We include absolute sizes such
as 'Length’ or "Radius’ as parameters only when their ratio
to some other part of the scene is significant, such as the
leg to body ratio of a creature, or the ratio of a sand dune’s
height to width.

Many of our material generators involve randomly gener-
ating colors using random HSV coordinates. This has three
degrees of freedom, but out of caution we treat each color as
one parameter. Usually, one or more HSV coordinates are
restricted to a relatively narrow range, so this one parameter
represents the value of the remaining axis. Equivalently, it
can be imagined as a discrete parameter specifying some
named color-palette to draw the color from. Some genera-
tors also contain compact functions or parametric mapping
curves, each usually with 3-5 control points. We treat each
curve as one parameter, as the effect of adjusting any one
handle is subtle.

Results In total, we counted 182 procedural asset gener-
ators with a sum of 1070 distinct interpretable parameters
/ Degrees-of-Freedom. We provide the full list of these
named parameters as Tables placed at the end of this
document as they fill several pages.

5. Transpiler

Code Generation In the simplest case, the transpiler is a
recursive operation which performs a post-order traversal
of Blender’s internal representation of a node-graph, and
produces a python statement defining each as a function call
of it’s children. We automatically handle and abstract away
many edge cases present in the underlying node tree, such as
enabled/disabled inputs, multi-input sockets and more. This



procedure also supports all forms of blender nodes, including
shader nodes, geometry nodes, light nodes and compositor
nodes.

Doubly-recursive parsing Blender’s node-graphs support
many systems by which node-graphs can contain and de-
pend on one another. Most often this is in the form of a
node-group, such as the dark green boxes titled Sunflow-
erSeedCenter and PhylloPoints in Fig. [13] Node-groups
are user-defined nodes, containing an independent node-tree
as an implementation. These are equivalent to functions in
a typical programming languages, so whenever one is en-
countered, the transpiler will invoke itself on the node-graph
implementation and package the result as a python func-
tion, before calling that function in the parent node-graph.
In a similar fashion, we often use SetMaterial nodes that
reference a shader node-graph to be transpiled as a function.

Probability Distribution Annotation Node-graphs con-
tain many internal parameters, which are artistically tuned by
the user to produce a desired result. We provide a minimal
interface for users to also specify the distribution of these pa-
rameters by writing small strings in the node name. See, for
example, the red nodes in Fig. When annotations of this
format are detected, the transpiler automatically inserts calls
to appropriate random number generators into the resulting
code.

6. Scene Composition Details

Our scenes are not individually staged images - for
each image, we produce a map of an expansive and view-
consistent world. One can select any camera pose or se-
quence of poses, which allows for video and other multi-view
data generation.

To allow this, we start by sampling a full-scene ground
surface. This is low-resolution, but is sufficient to approx-
imate the surface of the terrain for the purpose of placing
objects. We determine surface points using Poisson-Disc
Sampling. This avoids the majority of asset-asset intersec-
tions. We modulate point density using procedural masks
based on surface normals, Perlin noise and terrain attributes.
Asset rotations are determined uniformly at random. Our fi-
nal coarse global map is represented as a lightweight blender
file with intuitive editable placeholders to represent where
assets will be spawned in later steps of the pipeline.

We provide a library of 11 optional configuration files to
modify scene composition, namely Arctic, Coast, Canyon,
Cave, CIliff, Desert, Forest, Mountain, Plains, River and
Underwater. Each encodes simple natural priors such as
”Cacti often grow in deserts” or “Trees are less dense on
mountains”, expressed as modifications to these mask and
density parameters. More complex relations, like predators

and prey avoiding each other, or plants not growing in shaded
areas, are not currently captured.

6.1. Camera Selection

We select camera viewpoints with simple heuristics de-
signed to match the perspective of a creature or person,
which are as follow:

Height above Ground In order to match the perspective
of a creature or person, we sample the camera height above
ground from a Gaussian distribution. (with the exception
that in terrain-only scenes sometimes this height is higher to
highlight some landscape features)

Minimum Distance To avoid being blocked by a close-up
object and over-subdividing the geometry (which is expen-
sive), we select camera views with a minimum distance
threshold to all objects.

Coverage In order to avoid overly barren images and to
highlight interesting features, we may select views such
that a certain terrain component, e.g. a river, is visible.
Specifically, we may require that the camera view has pixels
from a specific terrain component or object type within a
certain range.

Standard Deviation of Depth We compute the variance
of pixel-wise depth values, and choose the viewpoint out of
ten random samples with the largest variance to favor more
interesting content.

6.2. Dynamic Resolution

In Fig. we show a visualization of triangle sizes in
cm? and in pixels as viewed from the camera. Face size in
meters increases proportionally to depth, whereas face size
in pixels remains approximately constant.

6.2.1 Spherical Marching Cubes

To generate a mesh for a specific camera view, we must
extract a mesh representation of the terrain which contains
dense pixel-size faces. Classical Marching Cubes struggles
to achieve this, as it evaluates the SDF at fixed intervals,
which results in too-sparse geometry near the camera and
too-dense geometry in the far distance. Spherical Marching
Cubes is our novel adaptation of this classic algorithm to
operate in spherical coordinates, which automatically creates
dense geometry near the camera where it is most needed,
thereby preventing waste and drastically improving perfor-
mance.
Spherical Marching Cube algorithm works as follows:



Low Resolution Step We divide the visible 3D space
(within the frustrum camera and a certain distance range
(dmin, dmaz)) into M x N X R blocks in spherical coor-
dinates, uniform in 6 and ¢ and logarithmically in . We
convert these to cartesian coordinates and evaluate the SDF
as usual. This yields a tensor of SDF values where grid cells
near d,,q, represent larger regions of space than those close
to the camera, thereby saving space.

Visible Block Search Step We use this SDF tensor to find
the closest block for each pixel with an SDF zero crossing,
resulting in an approximate terrain-only depth-map. These
blocks are low-resolution and may contain holes, so we
check them again with dense SDF queries to determine any
farther away visible blocks.

High Resolution Step Finally, we evaluate dense pixel-
size SDF queries for all visible blocks, and produce a final-
ized mesh with Marching Cubes. Theoretically the final size
of this mesh can still be proportional to cube of the resolu-
tion, but in practice we find it is proportional to square. This
step and the previous step can be performed iteratively to
prevent all potential holes.

Out-of-view Part The out-of-view part of the terrain is
needed for lighting effects but done with low resolution.

6.2.2 Parametric Surface Resolution Scaling

NURBS and other parametric surfaces support evaluation at
any mesh resolution. This is achieved by specifying some
du, dv as step sizes in parameter space. We provide heuris-
tics to compute appropriate values for these step sizes such
that the resulting mesh achieves a given max pixel size.

6.2.3 Subdivision and Remeshing

All other assets rely on established Subdivision and Voxel-
Remeshing algorithms to create dense pixel-size geometry.
We provide heuristics to compute appropriate subdivision
levels. Voxel Remeshing is time intensive but is especially
useful for creatures and trees whose geometry can otherwise
self-intersect or contain stretched faces.

7. Asset Implementation Details
7.1. Materials

Our materials are composed of a shader and a local ge-
ometry template. The shader procedurally generates realistic
color, roughness, specularity, metallicity, subsurface scat-
tering, and translucence parameters. The local geometry
template generates corresponding geometric detail. Most
often, the local geometry template simply computes a scalar

field over the underlying mesh vertices, and displaces them
along their normals to form a rough texture.

7.1.1 Terrain Materials

The majority of our terrain materials (including Mountain,
Granite, Snow, Stone, Ice) operate by combining many oc-
taves of Perlin Noise to form geometric texture, before ap-
plying a mostly flat color. Some, such as some random
variations of Mountain, create layered color masks as a func-
tion of the world Z coordinate. Others such as Sand follow a
similar scheme, but with a procedural Wave texture instead
of Perlin Noise.

Our Mud and Sandstone materials are particular expres-
sive. Mud procedurally generates puddles and slick ground
by altering color, displacement and roughness jointly. Sand-
stone generates realistic layered sedimentary rock using
noise functions and modular arithmetic based on the world
Z coordinate.

Lava uses displacement from Perlin noise, F1-smooth
Voronoi texture, and wave texture with varying scales. The
shader uses Perlin noise, Voronoi texture to model hot and
rocky parts, mixed with blackbody emission and a principled
BSDF.

Fire and Smoke are comprised of multiple volumetric
shaders. The first shader uses a principled volume shader
with blackbody radiation whose intensity is sampled based
on the amount of flame and smoke density. The smoke
density is randomly sampled. The second shader imitates a
high detail image captured with fast shutter speed and low
exposure. The detail is brought out based on contrasting
different regions of temperature and adding Perlin noise.
The colors are shades of orange.

All our water materials feature glass-like surfaces with
physically accurate Index-of-Refraction, combined with a
volumetric scattering shader to simulate realistic underwa-
ter light bounces. The Water shader uses these effects with
geometry untouched (for use with simulators), wherase Wa-
ter Surface assumes the base geometry is a plane and adds
geometric ripples.

7.1.2 Plant Materials

Our plant materials feature geometric and color variation
using procedural Stucci, Marble and Shot Noise textures.
We provide color pallettes for realistic plant and coral col-
ors, and produce variations on these using Musgrave noise.
All leafy plants feature realistic transmission and roughness
properties, to simulate light filtering through translucent
waxy leaves. Our Bark and Bark Birch simulate bark ex-
pansion and fracturing using voronoi and perlin noise to
generate displacements.



7.1.3 Creature Material

Fish We create two fish materials, a goldfish material and
a regular fish material. Each material consists of two parts,
a fish body material and a fish fin material. The fish body
material creates the displacement of fish scales. To build
the pattern of fish scales, we create a grid and fill every two
adjacent grids in one column with a half circle. Then we
move up the half circles in the even columns by one grid.
The colors of regular fish are guided by one wave texture
and two noise textures. The colors of goldfish are guided
by two noise textures and sampled between red and yellow.
The colors of fish bellies are usually white. A fish fin is
created by adding periodical bumps to round planes. The
weights of bump displacement are decreasing away from the
fish body. Dorsal fins are sometimes serrated. The goldfish
fins are translucent by mixing a principled BSDF shader, a
transparent shader and a translucent shader.

Bird Since our generated birds have particle fur, the bird
material need only create a colormap. We create masks that
highlight different body parts, including heads, necks, upper
bodies, lower bodies and wings. Each part is assigned two
similar colors guided by a noise texture. Our Bird material
generator has two modes of colors, one with light colored
heads and dark color bodies (emulating bald eagles and
falcons), one with dark color heads and light color bodies
(emulating ducks and common birds).

Carnivore and Herbivore Carnivores and Herbivores are
also equipped with particle fur and therefore color-only mate-
rials. We provide a Tiger material, which makes short stripes
by cutting a small-scale wave texture with another larger-
scale wave texture. Our Giraffe material builds spots by
subtracting a F1-smooth voronoi texture from a F1 voronoi
texture with the same scale. Three other spot materials build
scattered and sometimes overlapped spots using noise tex-
tures and voronoi textures. Our three reptile materials build
colormaps inspired by different kinds of reptiles. We pick
their colors to mimic the reference reptile images, and then
randomize in a small neighborhood.

Beetle We provide a Chitin material emulating the mate-
rial of real beetles and other insects. It uses a computed
”Pointiness” attribute to highlight the boundaries with sharp
curvature. We color the insect head and sharp boundaries
black, and other areas dark red or brown.

Bone, Beak & Horns Bone is most often used for animal
claws and teeth. It starts wit a white to light gray color,
before creating small pits in two different scales using noise
and voronoi textures. Our Horn material samples light brown
to dark brown colors, with a similar mechanism for pits and

scratches. Our Beak material replicates realistic bird beaks
by sampling a random yellow/orange/black color gradient
along. Noise textures are used to add some small pits on it.
Principled BSDF shaders are added to make the beaks more
shiny.

Slime We provide a material titled Slimy, which replicates
folded shiny flesh similar to a "Blobfish”. It builds thin and
distorted stripe displacement using a noise texture followed
by a wave texture. We create the shiny appearance by assign-
ing high specularity and subsurface scattering parameters.

7.1.4 Other material

Metal We build a silver material and an aluminium ma-
terial. These use Blender’s Principled BSDF shader with
Metallic set to 1. They also have sparse sunken displacement
from a noise texture.

7.2. Terrain

Figure 14. Terrain elements, including a) wind-eroded rocks, b)
Voronoi rocks, ¢) Tiled landscapes, d/e) Caves, and f) Floating
Islands.

7.2.1 Terrain Elements

The main part of terrain (Ground Surface) is composed of
a set of terrain elements represented by Signed Distance
Functions (SDF). Using SDF has the following advantages:

* SDF is written in C/C++ language and can be compiled
either in CPU (with OpenMP speedup) or CUDA to
achieve parallelization.

* SDF can be evaluated at arbitrary precision and range,
producing a mesh with arbitrary details and extent.

» SDF is flexible for composition. Boolean operations are
just minimum and maximum of SDF. To put cellular
rocks onto a mountain, we just query whether each
corresponding Voronoi center has positive SDF of the
mountain.

Terrain elements include:



Wind Eroded Rocks They are made out of Perlin
noise [23]] from FastNoise Lite [22] with domain warping
adapted from an article [7]. See Fig.[T4[a) for an example.

Voronoi Rocks These are made from Cellular Noise
(Voronoi Noise) from FastNoise Lite. They take another
terrain element as input and generate cells that are on the
surface of the given terrain element and add noisy gaps to
the cells. See Fig. [I4[b) for an example. We utilize this
element to replicate fragmented rubble, small rocks and even
tiny sand grains.

Tiled Landscape Complementary to above, we generate
heterogeneous terrain elements as finite domain tiles. First,
we generate a primitive tile using the A.N.T. Landscape
Add-on in Blender [6]], or a function from FastNoise Lite.
This tile has a finite size, so we can simulate various natural
process on it, e.g., erosion by SoilMachine [19], snowfall
by diffusion algorithm in Landlab [13] [3] [12]. Finally,
various types of tiles can be used alone or in combination to
generate infinite scenes including mountains, rivers, coastal
beaches, volcanos, cliffs, and icebergs. Fig. c) shows an
example of a iceberg tile. Tiles are combined by repeating
them with random rotations and smoothing any boundaries.
The resulting terrain element is still represented as an SDF.

Caves Our terrain includes extensive cave systems. These
are cut out from other SDF elements before the mesh is
created. The cave passages are generated procedurally us-
ing an Lindenmayer-System with probabilistic rules, where
each rule controls the direction and movement of a virtual
turtle [[17]. These rules include turns, elevation changes,
forks, and others. These passages have varying cross section
shapes and are unioned with each other, leading to compli-
cated cave systems with features from small gaps to large
caverns. One can intuitively tune the cavern size, tunnel
frequency and fork frequency by adjusting the likelihoods of
various random rules. See Fig. [T4[(d) for an interior view of
a cave and Fig.[T4|e) for how it cut from mountains.

Floating islands Besides natural scenes, we also have
fantastical terrain elements, e.g., floating islands (Fig. [T4(f))
by gluing mountains and upside down mountains together.

7.2.2 Boulders

We start off with a mesh built from convex hull of around
32 vertices. We randomly select some faces that are large
enough, so that they can be extruded and scaled. We repeat
this process for two levels of extrusions: large and small.
Finally we bevel the mesh, and add a displacement based on
high- and low-frequency Voronoi textures. After generating

the base mesh, boulders are given a rock surface and option-
ally a rock cover surface. See Sec. [7.1]for details. Boulders
are placed on the terrain mesh as placeholders.

7.2.3 Fluid

Most water and lava in our scenes form relatively static pools
and lakes — these are handled by generating a flat plane and
applying a Surface Water or Lava material from Sec.

Ocean We simulate dyhnamic oceans Blender’s built-in
modifier to generate displacements on top of a water plane.
This simulation is finite domain, so we tile it as described in
Tiled Landscape above.

Dynamic Fluid Simulation We generate dynamic water
and lava simulations using Blender’s built-in Fluid-Implicit-
Particle (FLIP) plugin [4]. They can either simulated on
a small region of the terrain or work together with Tiled
Landscape, e.g., Volcanos to be reused as instances. The
simulations are parameterized by sampled values of vortic-
ity, viscosity, surface tension, flow amount, and other liquid
parameters. We simulate fire and smoke simulations us-
ing Blender’s particle simulator. Our system allows for 1)
Simulating fire and smoke on small random regions on the
terrain or 2) Choosing arbitrary meshed assets on the scene
to be set on fire or emit smoke. The simulations interact
with turbulent and laminar wind flows added on the scene.
While these simulators are provided with Blender, we con-
tribute significant engineering effort to automate their use.
Typically, users manually set up individual simulations and
execute them through the UI - we do so programmatically
and at large scale.

7.2.4 Weather

We provide procedural SDF functions for 4 realistic cate-
gories of clouds, each implemented as node-graphs. We
implement rain and snow using Blender’s particle system
and wind simulation. We also apply atmospheric volume
scattering to the entire scene to create haze, fog etc.

7.2.5 Lighting

The majority of scenes are lit only by the sun and sky. We
simulate these using the built in Nishita [20] sky model, with
randomized parameters for the Sun’s position and brightness,
as well as atmospheric parameters. In cave scenes, we place
glowing gemstones as natural proxies for point lights. In
underwater scenes, ray-traced refractive caustics are too
costly at render-time, so we substitute textured spot lights.
Finally, we provide an option to attach a virtual flash light or
area light to the camera, to simulate a human or robot with
an attached light.



7.3. Plants
7.3.1 Leaves, Flowers & Pinecones

Pinecones Pinecones are the woody seed-bearing organs
for conifers, which features scales and bracts arranged
around a central axis, as shown in Fig. @] b). Pinecones
are made from individual buds. Each buds are sculpted from
a mesh circle, with its left most point chosen as the origin.
The vertices are displaced along the axis to the origin as well
as along the Z axis, with scale designated by the direction
from the origin to that point. We then create a mesh line
along the Z-axis to form the stem of the pinecone. Pinecone
buds are distributed on the axis from bottom to up with a
decreasing scale and changing rotation. The rotation is com-
posed of two parts: one along the Z axis that spread the buds
around the pinecone, another along the X axis the gradually
point the buds upwards. Pine shaders are made from Princi-
pled BSDF of a single color. Pinecones are scatters on the
terrain mesh surfaces.

Leaves Our leaf generation system covers common leaf
types including oval-shaped (which covers most of the broad-
leaved trees), maple, ginkgo, and pine twigs.

For oval-shaped leaves, we start by subdividing a 2D
plane mesh finely into grids, and evaluate each grid location
with various noise functions. The leaf boundary defined by a
set of control points of a Blender curve node, which specifies
the width of the leaf at each location along the main stem.
We then delete the unused geometry to get a rough shape of
the leaf. To create veins, we use a 1D Voronoi Texture node
on a rotated coordinate system, to model the angle between
the veins and the main stem. We extrude the veins and pass
the height values into the Shader Node Tree to assign them
different colors. We then add jigsaw-like patterns on the
boundaries of the leaf, and create the cell structures using a
2D Voronoi Texture node. We finally add wrapping effect to
the leaf with another curve node.

The maple leaves and ginkgo leaves are created in a very
similar way as the oval-shaped leaves, except that we use
polar coordinates to model rotational symmetric patterns,
and the shape of the leaves is defined by a curve node in the
polar coordinates.

Pine twigs are created by placing pine needles on a main
stem, whose curvature and length are randomized.

We use a mixture of translucent, diffuse, glossy BSDF to
represent the leaf materials. The base colors are randomly
sampled in the HSV space, and the distribution is tuned for
each season (e.g., more yellow and red colors for autumn).

FlowerPlant We create the stem of a flower plant with
a curve line together with an cylindrical geometry. The
radius of the stem gradually shrinks from the bottom to the
top. Leaves are randomly attached to resampled points on

the curve line with random orientations and scales within
a reasonable range. Each leaf is sampled from a pool of
leaf-like meshes. Additionally, we add extra branches to
the main stem to mimic the forked shape of flower plants.
Flowers are attached at the top of the stem and the top of the
branches. Additionally, the stem is randomly rotated w.r.t
the top point along all axes to generate curly looks of natural
flower plants.

7.3.2 Trees & Bushes

We create a tree with the following steps: 1) Skeleton Cre-
ation 2) Skinning 3) Leaves Placement.

Skeleton Creation. This step creates a directed tree-graph
to represent the skeleton of a tree. Starting from a graph
containing a single root node, we apply Recursive Paths to
grow the tree. Specifically, in each growing step, a new node
is added as the child of the current leaf node. We computed
the growing direction of the new node as the weighted sum
of the previous direction (representing the momentum) and
a random unit vector (representing the randomness). We
further add an optional pulling direction as a bias to the
growing direction, to model effects such as gravity. We also
specify the nodes where the tree should be branching, where
we add several child nodes and apply Recursive Paths for
all of them. Finally, given the skeleton created by Recursive
Paths, we use the space colonization algorithm [24] to create
dense and natural-looking branches. We scatter attraction
points uniformly in a cube around the generated skeleton,
and run the space colonization for a fixed amount of steps.
Skinning. We convert the skeleton into a Blender curve
object, and put cylinders around the edges, whose radius
grows exponentially from the leaf node to the root node. We
then apply a procedural tree bark material to the surface of
the cylinders. Instead of using a UV, we directly evaluate
the values of the bark material in the 3D coordinate space to
avoid seams. Since the bark patterns are usually anisotropic
(e.g., strip-like patterns along the principal direction of the
tree trunks), we use the local coordinate of the cylinders, up
to some translation to avoid seams in the boundaries.

Leaves Placement. We place leaves on twigs, and then
twigs on trees. Twigs are created using the same skele-
ton creation and skinning methods, with smaller radius and
more branches. Leaves are placed on the leaf nodes of the
twig skeleton, with random rotation and possibly multiple
instances on the same node. We use the same strategy to
place the twigs on the trees, again with multiple instances
to make the leaves very dense. For each tree we create 5
twig templates and reuse them all over the tree by doing
instancing in Blender, to strike a balance between diversity
and memory cost.

Compared to existing tree generation systems such as



the Sapling-Tree-Ge addon in Blender and Speed-Treeﬂ in
UEA4, our tree generation system creates leaves and barks
using real geometry with much denser polygons, and thus
provides high-quality ground-truth labels for segmentation
and depth estimation tasks. We find this generation proce-
dural very general and flexible, whose parameter space can
cover a large number of tree species in the real world.

Bushes We also use this system to create other plants such as
bushes, which have smaller heights and more branching com-
pared to trees. Our system models the landscaping bushes
that are pruned to different shapes by specifying the distribu-
tions of the attraction points in the space colonization step.
Our bushes can be of either cone, cube or ball shaped, as

shown in Fig.

7.3.3 Cactus

Globular Cactus is modeled after cactus from genus Fe-
rocactus, as shown in Fig. @}a). It features a barrel-like base
shape and tentacles growing from the pointy vertices of the
cactus body. We implement globular cactus by first creating
a star-like 2D mesh as its cross section. We then use geome-
try nodes to rotate, translate and scale it along the Z-axis at
the same time, converting it to a 3D mesh. The rotation of
the cross section mesh contributes to the desired tilt of the
cactus body, and the scale determines the general shape of
cactus. Finally the cactus is deformed and scale along the X
and Y axis. For Globular Cactus, spikes are distributed on
the the pointy vertices generated from the star and on the top
most part of the cactus.

Columnar Cactus is modeled after cactus from genus
Cereus, as shown in Fig.[I6p). It features an elongated body
with a torch-like shape. We first generate the skeleton using
our tree skeleton generation method. This time we choose
a configuration with only two levels, both with a smaller
momentum in path generation and a large drag towards the
positive Z-axis that finally makes the cactus pointing up.
From the cactus skeleton, we convert it into a 3D mesh with
geometry nodes that moves a star mesh along all the splines
in the tree-like skeleton, with the top end of each path having
a smaller radius. For Columnar Cactus, spikes are distributed
on the the pointy vertices generated from the star and on the
top most part of the cactus.

Pricky pear Cactus is modeled after cactus from genus
Opuntia, as shown in Fig.[I6f). It features pear-like cactus
part extruded from another one. We create individual cactus
parts similar to the one in Globular cactus. We it down in
Y-direction and rotated it along the Z-axis so that it becomes
almost planar and pear-shaped. These individual cactus parts
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are stacked on top of each other with an angle recursively
to make the whole cactus branching like a tree. For Pricky
Pear Cactus, we distribute spikes on both the front and the
back faces of the cactus.

Cactus spikes After the main body of a cactus is created,
we apply medium-frequency displacement on its surface
and add the spike according to specifications. The low-poly
spikes are made from several straight skeletons generated by
the tree generation system, and are distributed on the selected
areas of the cactus with some minimal distance between two
instances.

7.3.4 Fern

We create 2-pinnate fern (fern) in Infinigen, as it is common
in nature. Each fern is composed of a random number of
pinnae with random orientations above the ground. Several
instances of fern pinnae are illustrated in Fig[T7]

Pinnae Composition Each pinnae consists of a main stem
and a random number of pinna attached on each side of the
stem. The length of the pinnae (main stem) is controlled by
a parameter age. The main stem is first created with a mesh
line with its points set along the z-axis. Then, the mesh line
is randomly rotated w.r.t X, y axis around the top point to
generate the curly look of a fern pinnae. The pinnae’s z-axis
rotation is slightly different with x, y axis rotation, as we use
its curvature to represent the age of the fern. In nature, young
fern pinnae has more curly stem and grown-up fern pinnae
is usually more stretched and flat. Therefore, we choose the
scale of the pinnae’s z-axis rotation inverse proportion to the
age of the pinnae. The external geometry of the main stem
is a cylindar with its radius gradually shrinks to O at the top.
Noticing that the bottom point is always set to world origin
despite of the random rotations of the mesh line.

Before merging multiple pinnae into a fern, each pinnae is
further curved along the z-axis towards the ground according
to the desired orientation of the pinnae. We refer this as
the gravitational rotation induced on the geomtery of pinnae.
The scale of the gravitational rotation at each mesh line point
is also proportion to its distance to the world origin, i.e., the
longer the larger.

For 2-pinnate fern, the geometry of each pinna is similar
to pinnae, i.e., a stem and leaves attached on each side.
Similar to the main stem, we also curve the pinna stem
randomly w.r.t X, y axis and inverse proportion to the age
w.r.t the z-axis. In our fern, the leaves are created with simple
leaves-like geometry.

The whole pinnae is generated by adding leaf instances
on pinna stem and then adding pinna instances on the main
stem. The scale of each leaf instance is scaled to form a
desired contour shape of the pinna, which is defined to grow



linearly from tip to bottom with additional random noise.
For pinna instances on the pinnae, we generate multiple
distinct pinna versions and then randomly select one for
each mesh line point. In this way, we can enough irregularity
and asymmetricity on the pinnae. Furthermore, the pinna
instances are also scaled according to the desired pinnae
contour. In our asset, two contour modes are use. One grows
linearly from top to bottom with additional random noise
and the other grows linearly from top to é from the bottom
and then decrease linearly till the bottom of the pinnae.

Moreover, after all components are joined together, ad-
ditional texture noise is added on the mesh to create more
irregularities.

Fern Composition Each fern is a mixture of pinnae with
random orientations. In nature, these fern pinnae typically
bend down towards the ground. We also add young fern
pinnae standing rigidly in the center.

7.3.5 Mushroom

Mushrooms are modeled after real mushrooms from genus
Agaricus and Phallus, as shown in Fig. @] a). A mushroom
is composed of its cap, its stem that supports the cap and
optionally the skirt that grows from underneath the cap. The
cap is made from moving a star-like mesh along the Z-axis
with radius specified by multiple Bezier curves. The star-like
mesh forms the pleats on the cap surface and gills underneath
the caps. The stem is made from a Bezier curve skeleton
and converted to a 3D mesh via geometry nodes, with its
top end sticking to the cap at an angle. For the mushroom
skirt, we create an invisible mesh P underneath the cap
that have a similar cross section as the cap. Following the
same technique in the Brain Coral (See Appendix [7.3.6), we
shrinkwrap a reaction-diffusion pattern from a icosphere .S
onto P, which also mapped the A field onto P. This time,
we remove the vertices whose A field is below a certain
threshold from the mesh P, so P would have honeycomb-
like holes. The skirt is placed underneath the cap. Mushroom
have similar material as corals, but have more white spots
and lower roughness on its surface. Mushrooms are scattered
on the terrain surface.

7.3.6 Corals

Corals are marine invertebrates that live mostly on the
seafloor, and are prevalent in underwater scenes. In Infinigen,
we provide a library of 8 templates for generating different
classes of corals. Examples of individual coral classes are
provided in Fig.[T§] We elaborate these templates for the
main coral bodies as follows:

Leather Coral is modeled after corals from genus Sinu-
laria, as shown in Fig.[T8). It features curvy surfaces that
folds on it self. We implement Leather Coral using a itera-
tive mesh generation technique named Differential Growth
from [21]]. The mesh starts off as a mesh circle. At each
iteration, a force is applied to all of its points. The force at
each point is composed of an attraction force from its graph
neighbors, a repulsive force from vertices that are close in
3D position, a global growth direction, and a noise vector.
All of these forces can be specified by a set of parameters.
Such force is applied on all vertices, and the vertices would
be displaced by a distance proportional to the force. More
concretely, for all vertices v

Axv = X;; — Xy X fattr + frep + fgrow + fnoise

If the displacement has moved two vertices so that the
edge connecting these two vertices has its length above a
certain threshold, such edge would subdivided so that their
lengths would fall below the threshold, creating new vertices
on the edges. The aforementioned process defines a growing
mesh when it is repeated for multiple iterations. In specific,
for Leather Corals, we choose the parameters so that the
noise force function and growth force function are large,
and the growth iterations stop when there’s 1k faces. To
convert this mesh to the final coral mesh, we apply smooth
and subsurface operation on the mesh, followed by a solidify
operation that gives the planar mesh some width, converting
it into a 3D mesh.

Table Coral is modeled after corals from genus Acropora,
as shown in Fig.[I8p). It features a flat table with curvy sur-
faces near the boundary. For Table Corals, we use the same
Differential Growth method as the Leather Coral. However,
we choose a different set of parameters for force application.
More concretely, we use a larger repulsion force, apply less
displacement on boundary vertices, and stop the process
after there is 400 faces in the mesh.

Cauliflower Coral is modeled after corals from genus
Pocillopora, as shown in Fig. [I8). It features wart-like
growth on its surface. We implement Cauliflower Coral
after [[14]’s simulation of dendritic crystal growth. In this
growth simulation setup, we have two density fields A and B
over 3D space. The simulation follows the following PDE:
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where «,, T, e, T, k are pre-specified parameters. We run
this PDE simulation on a 3D grid space with forward Euler
method for 800 iterations. The resulting density map A, is
used to generate the 3D mesh for the coral via the marching
cube mesh conversion method.

Brain Coral is modeled after corals from genus Diploria,
as shown in Fig.[T8[). It features groovy surface and intricate
patterns on the surface of the coral. We first create the
surface texture with reaction-diffusion system simulation. In
particular, we start off from a mesh icosphere, and run Gray-
Scott reaction-diffusion model on its vertex graph, where
edges in the mesh are the edges of the graph. This simulation
has two fields A, B on individual vertices, following the
equation of:

% =raVA—A’B+ f(1 - A)
%—Jf =rgVB - A’B — (f +k)B

where 74, 7, f, k are pre-specified parameters. After 1k
iterations, the field A is stored to the mesh sphere S. Then
we build another polygon mesh P, which follows simple
deformation by geometry nodes. We apply shrinkwrap object
modifier from S to P, which also maps the field A onto mesh
P. The shrinkwrap object modifiers ‘wraps’ the surface of A
onto P by finding the projected points of A along A’s normal
direction. We displace P’s surface using the projected field
A, which forms the grooves on the mesh surface. For Brain
Corals, we choose the parameters so that f = vk /2 — k for
some specific k, i.e. the kill rate and feed rate of system are
on the saddle-node bifurcation boundary, so that the surface
is groovy.

Honeycomb Coral is modeled after corals from genus
Favia or Mussismilia, as shown in Fig. ). It features
honeycomb-shaped holes on the surface of the coral. We
use the same Gray-Scott reaction-diffusion model [8]] as
the Brain Corals. We choose the parameters so that f =
\/E/Q — k — 0.001 for some specific k, i.e. the kill rate
and the feed rate of the system are between the saddle-node
bifurcation boundary and the Hopf bifurcation boundary,
which yields the honeycomb-shaped holes.

Bush Coral is modeled after corals from genus Acropora,
which includes the Staghorn coral, as shown in Fig. . We
implement bush coral using our tree skeleton generator as
discussed. In particular, the skeleton of tree coral has three
levels of configuration, with each level of configuration spec-
ifying how a branch would grow in terms of directions and

length, as well as where new branches would emerge. After
the tree skeleton is generated, we convert the 1D skeleton to
3D mesh by specifying radius at each vertex of the skeleton,
with the vertices closer to endpoints having a smaller radius.

Twig Coral is modeled after corals from genus Oculina, as
shown in Fig.[I8). We use the same tree skeleton generator
as in Bush Corals. We choose a separate set of parameters
so that Twig Corals are more low-lying and less directional
than Bush Corals.

Tube Coral is modeled after not corals, but sponges from
genus Aplysina, which none-the-less lives in the same habitat
as corals, as shown in Fig.[I8h). We first generate the base
mesh as the dual mesh of a deformed icosphere, whose faces
have between 5-6 vertices. The optionally extrude some its
upward facing faces along the direction that is approximately
along the positive Z-axis. This types of extrusion happens
multiple times with different multiple extrusion length. The
extruded mesh will have its topmost face removed and will
be applied with the solidify object modifier so that the mesh
would become a hollow tube.

Coral tentacles After the main body of a coral is created,
we add a high frequency noise onto the coral surface. We
then add tentacles to the coral mesh. Each tentacle has a
low-poly mesh generated from the tree generator system that
sprawls outside the coral body. Tentacles are distributed on
certain parts of the coral body, like on top-facing surfaces or
outermost surfaces.

7.3.7 Other sea plants

Besides corals, we also provide assets of other sea plants,
like kelps and seaweeds. Both kelps and seaweeds observe
the global oceanic current, which is unique for the entire
scene. We show examples of kelps and seaweeds in Fig.

Kelps Kelps are large brown algae that lives in shallow
waters, as shown in Fig. [I9h). To build kelps, we first build
meshes for individual kelp leaves. To do so, we first create
a planar mesh which is bounded by two sinusoid functions
from two sides. It is then deformed along the Z axis an
subsurfaced and make a wavy shape. For the kelp stem, we
first plot a Bezier curve with its control points following a
Brownian process with drift towards the sum of the posi-
tive Z direction and the oceanic current drift. The curve is
turned into a mesh with a small radius, and this becomes
the mesh of the kelp stem. Along the stem we scatter points
with fixed intervals, where we place kelp leaves along its
normal direction. Finally, we rotate the kelp leaves towards
somewhere lower than the oceanic current vector, so that
they are affected by both the oceanic current and gravity.



Seaweeds Seaweeds are another class of marine algae that
are shorter than kelps, as shown in Fig. [I9). We create
seaweed assets using the Differential Growth model as in
the Leather Coral assets (See Section Appendix [7.3.6). In
particular, we choose the parameters so that it has a large
growth force towards the positive Z axis. We apply smooth-
ing and subsurfacing to the 2D mesh and solidify it into a 3D
mesh. Then the seaweed is bent towards the direction of the
oceanic current by a varying degree using the simple deform
object modifier. Seaweeds are scattered on the surface of the
terrain mesh.

7.4. Surface Scatters

Moss forms dense green clumps or mats on a flat surface.
We create individual moss using Bezier curves as skeletons,
and then turning them into 3D mesh. We distribute individ-
ual moss instance on the boulder surfaces with the Z axis
aligned at an angle with the surface normal. Such angle of
rotation is guided by a Musgrave texture so that mosses in a
neighbourhood have similar rotations. Moss instances have
shaders that is built from a mixture of several yellowish to
greenish colors, with the color variation determined by a
Musgrave texture. Moss can grow on three different places
of the boulder, from the faces with a higher Z coordinate
than a threshold, or those whose face normal is within a
threshold of the positive Z axis, or near edges where there
are concave edges.

Lichen is a composite organism that arises from algae that
forms a mat on rock surfaces. Individual lichens are made
from Differential Growth specified in Appendix [7.3.6] The
color of lichens comes from a mixture of yellowish-greenish
color and white colors, with the mixing ratio guided by a
Musgrave texture. Lichen can grow on either boulders or on
tree trunks. On boulders, lichens are distributed on all faces
of the boulder, or the lower portions of tree trunks with a
minimal distance between two instances.

Slime mold are organisms shaped like gelatinous slime
that lives on decaying plant materials. We first designate
around 20 initial seedling vertices where the slime mold can
grow from, and assign a random weight proportional to the
local convexity to all edges in the chosen area of the mesh.
Then we use geometry nodes to compute the shortest path
from each vertex to any of the seedling vertices, and connect
these shortest path. These shortest paths from the skeleton of
the slime mold. Slime mold only grows on the lower portion
of tree trunks

Pine needles Pine needles are the leaves of the pine tree
that have fallen onto the ground, as shown in Fig.[22] Pine
needles are made from a segment of a ellipsoid and are

typically of brownish and greenish colors. Pine needles are
scattered on certain parts of the terrain surface based on
noise texture. Pine needles are scattered on different heights
so that pine needles of a certain color are above pine needles
of another color.

7.5. Marine Invertebrates

7.5.1 Mollusk

Mollusk is the collection of animals that includes most snails
and shells, as shown in Fig.[23]

Snails is modeled after animals mostly from the class Gas-
tropoda. 1t features snails of following shape: Conch (Fig.[23]
a), from family Strombidae, Auger (Fig.[23|b), from family
Terebridae), Volute (Fig. c),from family Volutidae) and
Nautilus (Fig.[23|d),from a different class Cephalopod). All
these class of animals share the commonality that they live
in a shell that grows and rotates at a constant angle as the
soft body of the animal grows, which can be modeled using
the array object modifier in Blender. We first build the cross
section of these snails from the interpolation of a start and a
ellipsoid, which gives the space for the soft body to live in,
as well as the pointy spikes on some snails’ surface. Then
we apply the array object modifier onto the cross section so
that it is rotated with a constant angle, scaled at a constant
ratio, and displaced at a constant interval. These series of
cross section can uniquely define the cross section at each
stage of the growth, with which we can bridge the edge loops
to finally form a 3D mesh for the whole snail. Parameters in
this process includes the displacement of cross section along
and orthogonal to the axis, the total number cycles of rota-
tions, the ratio that the scale of cross section shrinks, and the
other parameters with regard to the shape of the base cross
section. The parameters are set differently for individual
class of snails: Conch and Auger have large displacement
along their axis while Volute and Nautilus have almost none;
Conch is made from more spiky cross section mesh, and
has less overlapping chambers than Auger; Nautilus has a
faster-shrinking cross section, almost no displacement along
the axis, and have less over lapping chambers than Volute.

Shells is modeled after animals mostly from the class Bi-
valvia. It features shells of the following shape: Scallop
(Fig.[23]e), from family Pectinidae), Clam (Fig.[23|f), from
family Veneridae and Mussel (Fig. 23|g), from family Myril-
idae). These animals share the commonality that they are
covered by two symmetrical shells joining at a point that
folds around the soft body of the individual, with both shells
growing gradually from inside the shell. To build assets
for these shells, we first generate individual shells. We first
create a mesh circle and select one point on the circle as
its origin. For all points on the circle, we scale its distance



from the origin, with the ratio determined by the direction
from the origin to the target point. Then we choose a point
above the XY-plane, and interpolate between the previous
mesh and the newly selected point. The interpolation ratio is
determined by a point’s distance to the boundary, so that the
boundary points are the XY plane, which creates the convex
shape of an individual shell. We mirror the shell at an angle,
and now we have the 3D mesh of the shell. We have different
designs for distinct class of shells: Scallops are given a wavy
pattern depending on vertices’ direction to the origin, and
have girdles near the origin; Clams are the most basic shells
with no alternations; Mussels are made from shells that are
similar to ellipsoids with large eccentricities.

Mollusk material Both snails and shells grows along a
certain direction and leaves a changing color pattern along
its growing direction. We define a 2D coordinate (U, V)
the mollusks surface for mapping textures, whether U is the
growth direction and V is orthogonal to it. For snails, U is
the direction of displacement for its cross section mesh, and
V' is along the boundary of the cross section mesh. For shells,
U is the direction from the center of the shell to the boundary
of shell, and V is along the boundary of the shell. We design
a saw-like wavy texture that progresses along either U or V'
directions, which creates interchanging color patterns along
or orthogonal to the direction of growth. Both snails and
shells are given a low-frequency surface displacement, and
scatter on the terrain mesh.

7.5.2 Other marine invertebrates

Jellyfish is composed of its cap and tentacles. For the cap,
we first generate two mesh uv spheres with one above an-
other, then scale and deform both spheres. Then we subtract
the sphere below from the the sphere above, creating the cap
with two surfaces, one facing towards the positive Z axis
and another facing towards the negative Z axis. Tentacles
are made from ribbons along the Z axis, which are later
deformed along the X axis and tapered, and finally rotated
around the Z axis. Tentacles of varying sizes are placed
around the lower surface of the cap. The jellyfish shader
is made from a mixture of colored emission, a principled
BSDF with transmission, and a colored transparent shader,
whose mixing ratio is guided by Fresnel coefficients. We
use a more transparent material for outer surface of the cap
and shorter tentacles, which are more peripheral parts of the
body, and a more opaque material for inner surface of the
cap and longer tentacles, which are core organs of a jellyfish.
Jellyfish are scattered with a random offset above the ground
mesh.

Urchin is a spiny, globular animal living on the sea floor.
For modeling urchin assets, we first start with an icosphere.

For each face of the icosphere, we extrude it outwards by
a small distance, scale it down, and extrude it inwards to
form the girdle. We then extrude the faces outwards by a
varying but large distance, and scale it down to zero so that
they form the spikes that ground on the urchin. The bases
of an urchin are from a darker color and the spikes are from
a lighter color between purple and yellow, with the girdle’s
color somewhere in between.

7.6. Creatures
7.6.1 Creature Construction

Each creature genome is a tree of parameters, with nodes
specifying parts and edges specifying attachment.

Each node contains a dictionary of named input parame-
ters for one of our part templates (Sec. [7.6.4). We compute
all parts in isolation before proceeding to attach them. This
part template must produce 1) a mesh and 2) a skeleton line.
The skeleton line is a 3D parametric curve specifying the
center line of the part, and is used for attachment and rig-
ging. Requiring part templates to produce a center line is
not a limitation - for NURBS and most node-graph parts it
is trivial to obtain. Additionally, this output can be omitted
for any part not intended to have further children attached to
it. Each part template may also produce additional metadata
for use in the animation and material stages.

Each edge contains a coordinate (u,v,r) to determine
the attachment location. (u,v) € [0, 1]? specifies a location
on the parent mesh’s surface. For arbitrary meshes, this
is computed by travelling u percent of the way along the
parent’s skeleton and raycasting orthogonally to it, with
angle 360° % v. If the parent part is a NURBS, one can
instead query (u,v) on it’s parametric surface. Finally, we
use 7 to interpolate between the found surface point, and
the corresponding skeleton point, which has the effect of
controlling how close to the surface the part is mounted.

Finally, each edge specifies a relative rotation used to pose
the part. Optionally, this rotation can be specified relative to
the parent part’s skeleton tangent, or the attachment surface
normal.

7.6.2 Creature Animation

As an optional extra output, each part template may specify
where and how it articulates, by specifying some number of
Jjoints. Each joint provides specifies rotation constraints as
min/max euler angles, and a parameter ¢ € [0, 1], specifying
how far along the skeleton curve it lies. If a part template
specifies no joints, it’s skeleton is assumed to be rigid, with
only a single joint at £ = 0. We then create animation bones
spanning between all the joints, and insert additional bones
to span between parts.

Any joint may also be tagged as a named inverse kinemat-
ics (IK) target, which are automatically instantiated. These



targets provide intuitive control of creature pose - a user or
program can translate / rotate them to specify the pose of
any tagged bones (typically the head, feet, shoulders, hips
and tail), and inverse kinematics will solve for all remaining
rotations to produce a good pose.

We provide simple walk, run and swim animations for
each creature. We procedurally generate these by construct-
ing parametric curves for each IK target. These looped
curves specify the position of each foot as a function of
time. They can be elongated or scaled in height to achieve a
gallop or trot, or even rotated to achieve a crab walk or walk-
ing in reverse. Once the paths are determined, we further
adjust gait by choosing overall RPM, and offsets for how
synchronized each foot will be in it’s revolution.

7.6.3 Genome Templates

In the main paper, we show the results of our realistic Car-
nivore, Herbivore, Bird, Beetle and Fish templates. These
templates contain procedural rules to determine tree structure
by adding legs, feet, head and appropriate details to create a
realistic creature. Each template specifies distributions over
all attachment parameters specified above, which provides
additional diversity ontop of that of the parts themselves.
Tree topology is mostly fixed for each template, although
some elements like the quantity of insect legs and presence
of horns or fish fins are random.

Our creature system is modular by design, and supports
infinite combinations besides the realistic ones provided
above. For example, we can randomly combine various crea-
ture bodies, heads and locomotion types to form a diverse
array of creatures shown in Fig As we continue to im-
plement more independent creature parts and templates, the
possible combinations of these random creature genomes
will exponentially increase.

Creature genomes also support a semi-continuous inter-
polation operation. Interpolation is trivial for creatures with
identical tree structure and part types - one can perform
part-wise linear interpolation of node and edge parameters.
When tree topology or part types don’t match, we recursively
compute a matching for each node’s children which mini-
mizes the difference of edge attachment parameters, then
perform linear interpolation on any node parameters with
matching names. To interpolate between a present and miss-
ing genome node, we scale the part down from its original
size to 0, which results in small vestigial arms or tails on the
intermediate creatures. When part types do not align exactly,
there is a discrete transition halfway through interpolation,
so interpolation is not continuous in all cases.

7.6.4 Creature Parts

NURBS Parameterization Many of our creature body
and head templates are comprised of non-uniform rational

B-splines (NURBS). NURBS are the generalized 3D analog
of a Bézier curve. In order to form a closed shape, we
pinch each NURBS surface closed at its ends, and loop it’s
handles in the V direction to form a closed cylinder as a
starting point. We set the U and V knot-vectors to be Pinned
Uniform, and instead rely on densely-spaced or coincident
handles to create sharp edges where necessary.

By default, a NURBS cylinder is represented as an N M
array of 3D handle locations. We find the space of all
NURBS handle configurations too high dimensional and
unstructured to randomize directly. Adding Gaussian noise
to handle locations produces lumpy, unrealistic creatures,
and is unlikely to coordinate to create phenomena like bent
limbs or widened midsections. Instead, we randomize under
a factored representation. Specifically, we start with a Nx3
array of radii and relative angles, which stores a center line
for the part as polar-coordinate offsets. Accumulating these
produces an Nx3 skeleton line. We arrange N profile shapes
around this center line, each stored as M 3D points centered
about the origin. This representation has just as many pa-
rameters as the original, but randomizing it produces better
results. Adding noise to the polar skeleton angles and radii
produces macro-scale changes in body or head shape, and
multiplying the profiles by random scalars can easily change
the radius or cross section, independent of where along the
skeleton that profile is located.

As a starting point for this randomization, we determined
skeleton and profile values which visually match a large
number of reference animal photos, including Ducks, Gulls,
Robins, Cheetahs, Housecats, Tigers, Wolves, Bluefish, Crap-
pie Fish, Eels, Pickernel Fish, Pufferfish, Spadefish, Cows,
Giraffe, Llama and Goats. Rather than make a discrete
choice of which mean values to use, we take a random con-
vex combination of all values of a certain category, before
applying the extensive randomization described above.

Horns are modeled by a transpiled Blender node graph.
The 2D shapes of horns are based on spiral geometry node,
supporting adjustable rotation, start radius, end radius and
height. The 3D meshes then are constructed from 2D shapes
by curve-to-mesh node, along with density-adjustable depth-
adjustable ridges. Along with the model, we provide three
parameter sets to create goats, gazelles and bulls’ horn tem-
plates.

Hooves are modeled by NURBS. We start with a cylinder,
distributing control points on the side surface evenly. For
the upper part of the cylinder, we scale it down and make it
tilted to the negative X axis, which makes its shape closed
to the horseshoe. The model also has an option to move
some control points toward the origin, in order to create
cloven hooves for goats and bison. Along with the model,



we provide two parameter sets to create horses’ and goats’
horns templates.

Beaks are modeled by NURBS. Bird beaks are composed
of two jaws, generally known as the upper mandible and
lower mandible. The upper part starts with a half cone. We
use the exponential curve instead of the linear curve of the
side surface of the cone to obtain the natural beak shape.
The model also has parameters that control how much the
tip of the beak hooks and how much the middle and bottom
of the beak bulge, to cover different types of beaks. The
lower part is modeled by the same model of the upper part
with reversed Z coordinates. Along with the model, we
provide four parameter sets to create eagles, herons, ducks
and sparrows’ beaks templates.

Node-Graph Creature Parts All part templates besides
those mentioned above are implemented as node-graphs.
We provide an extensive library of node-groups to ease the
construction of creature parts. The majority of these involve
placement and querying of parameterized tubes, which we
use to build muscular legs, arms and head parts. For example,
our Tiger Head and Quadruped Leg templates contain nodes
to construct the main central form of each part, followed
by placement of several tubes along their length to create
muscles and detailed forms. This results in a randomizable
representation of face and arm musculature, which produces
the detailed carnivore heads and legs shown in the main
paper. These node-graph tools can also be layered ontop of
NURBS as a base representation.



Figure 5. 144 randomly generated, non-cherry-picked images of terrain produced by our system (Part 1 of 2). Images are compressed due to
space constraints - please see infinigen.org


https://infinigen.org

Figure 6. 144 randomly generated, non-cherry-picked images of terrain produced by our system (Part 2 of 2). Images are compressed due to
space constraints - please see infinigen.org


https://infinigen.org

Image Ours Lietal. [15] Sceneflow [|18] TartanAir [27] Falling Things [26]

Figure 7. Qualitative results on natural stereo photographs. Rectified input images are captured at 2208 x 2484 resolution using a calibrated
ZED 2 stereo camera [1]]. Our data generator helps RAFT-Stereo generalize well to real images of natural objects.



Image Ours Lietal. [15] Sceneflow [18] TartanAir [27) FallingThings [26]

Figure 8. Qualitative results on the Plant and Australia Middlebury [_25] test images. RAFT-Stereo trained using Infinigen generalizes well
to images with natural objects.



Surface Normals + Instance

RGB Depth Occlusion Boundaries Segmentation

Figure 9. High-Resolution Ground Truth Samples. We show select ground truth maps for 8 example Infinigen images. For space reasons, we
show only Depth, Surface Normals / Occlusion and Instance Segmentation. Our instance segmentation is highly granular, but classes can be
grouped arbitrarily using object metadata. See Sec@ for a full explanation.



(a) The area of mesh faces in cm?. Our dynamic-resolution scaling causes
faces closer to the camera to be smaller.

(b) Distance of faces from the camera (i.e. depth). Distance is propor-
tional to the area of faces.

(c) Face area measured in pixels. Our dynamic resolution scaling causes
individual mesh faces to appear approximately one pixel across.

Figure 10. Dynamic Resolution Scaling. Faces further from the
camera are made smaller (a) such that they appear to be the same
size from the camera’s perspective (c). We show the depth map for
reference (b).

(a) Input Image for reference.

(b) Depth from Blender’s built-in render passes.

Figure 11. Our ground truth is computed directly from the under-
lying geometry and is always exact. Prior methods [5}9H11}/15]
generate ground-truth from Blender’s render-passes, which leads to
noisy depth for volumetric effects such as water, fog, smoke, and
semi-transparent objects.



(a) Wall Time (Hours) (b) Memory (GB) (c) CPU Hours (d) GPU Hours (e) # Triangles per scene

Figure 12. Resource requirements for creating a pair of stereo 1080p images using Infinigen. Our mesh resolutions scale with the output
image resolution, such that individual mesh faces are barely visible. As a result, these statistics will change for different image resolutions.

Figure 13. An example node-graph, as shown as input to the tran-
spiler in Fig. 3 of the main paper. Dark green nodes are node
groups, containing user-defined node-graphs as their implementa-
tions. Red nodes show tuned constants, with annotations for their
distribution.

Figure 15. We control the shape of bushes by by specifying the
distributions of the attraction points. Each row are the same bush
species with different shapes (left to right: ball, cone, cube).



b)

Figure 16. All classes of cacti included in Infinigen. Each row contains one class of cactus: a) Globular Cactus; b) Columnar Cactus; c)
Pricky pear Cactus.



Figure 17. Assets of fern pinnae included in Infinigen. A fern consists of a random number of pinnae in the same color with random
orientations.



c) d)
e) f)
d) h)

Figure 18. All classes of corals included in Infinigen. Each block contains one class of coral: a) Leather Coral; b) Table Coral; ¢) Cauliflower
Coral; d) Brain Coral; ) Honeycomb Coral; f) Bush Coral; g) Twig Coral; h) Tube Coral.

a)

b)

Figure 19. Kelps a) and seaweeds b) examples, each occupying one row.



b)

Figure 20. Boulder assets with different rock cover surfaces. In particular, each row of boulders are under a) no surface; b) moss surface; )
lichen surface.



b)

Figure 21. Mushrooms a) and pinecones b).

Figure 22. Pine needles scattered onto the ground with varying density.



¢)

Figure 23. Different classes of mollusks, with each block representing a class of mollusk: a) Conch, b) Auger, ¢) Volute, d) Nautilus, e)
Scallop, f) Clam, g) Mussel.



Figure 24. We provide procedural rules to combine all available creature parts, resulting in diverse fantastical combinations. Here we show a
random, non-cherry-picked sample of 80 creatures. Despite diverse limb and body plans, all creatures are functionally plausible and possess
realistic fur and materials.



Material Generators

Interpretable
DOF

Named Parameters

Mountain 2 Noise Scale, Cracks Scale

Sand 5 Color Brightness, Wave Scale, Wave Distortion, Noise Scale, Noise Detail

Cobblestone 13 Stone Scale, Uniformity, Depth, Crack Width, Stone Colors (5), Mapping Positions (2), Roughness

Dirt 9 Low Freq. Bump Size, Low Freq Bump Height, Crack Density, Crack Scale, Crack Width, Color1, Color2,
Noise Detail, Noise Dimension

Chunky Rock 4 Chunk Scale, Chunk Detail, Colorl, Color2

Glowing 1 Colorl

Granite 6 Speckle Scale, Colorl, Color2, Speckle Color1, Speckle Color2, Speckle Color 3

Ice 7 Color, Roughness, Distortion, Detail, Uneven Percent, Transmission, IOR

Mud 12 Wetness, Large Bump Scale, Small Bump Scale, Puddle Depth, Percent water, Puddle Noise Distortion, Puddle
Noise Detail, Colorl, Color2, Color3, WaterColor1, WaterColor2

Rock 0

Sandstone 18 Ridge Polynomial (2), Ridge Density, Ridge High Freq., Ridge Noise Mag., Ridge Noise Scale, Ridge
Disp:Offset Magnitude, Roughness, Crack Magnitude (2), Crack Scale, Color1, Color2, Dark Patch Percentages
(3), Micro Bump Scale, Micro Bump Magnitude

Snow 3 Average Roughness, Grain Scale, Subsurface Scattering

Soil 10 Pebble Sizes (2), Pebble Noise Magnitudes, Pebble Roundness, Pebble Amounts, Voronoi Scale, Voronoi
Mag., Base Colors (2), Darkness Ratio

Stone 10 Rock Scale, Rock Deepness (2), Noise Detail, Noise Roughness, Crack Scale, Crack Width, Colorl, Color2,
Roughness

Aluminium 2 Bump Offset, XY Ratio

Fire 2 Blackbody Intensity, Smoke Density

Smoke 2 Color, Density

Ocean 5 Wave Scale, Choppiness, Foam, Main Color, Cloudiness

Lava 10 Color, Rock Roughness, Amount of Rock, Lava Emission, Min Lava Temp., Max Lava Temp., Voronoi Noise,
Turbulence, Wave Scale, Perlin Noise

Surface water 5 Color, Scale, Detail, Lacunarity, Height

Water 6 Ripple Scale, Detail, Ripple Height, Noise Dimension, Lacunarity, Color

Waterfall 3 Color, Foam Color, Foam Density

Bark 9 Displacement Scale, Z Noise Scale, Z Noise Amount, Z Multiplier, Primary Voronoi Scale, Primary Voronoi
Randomness, Secondary Voronoi Mix Weight, Secondary Voronoi Scale, Color

Bark Birch 5 Noise Scale (2), Noise Detail (2), Displacement Scale,

Greenery 13 Color Noise (3), Roughness Noise (3), Roughness Min/Max (2), Translucence Noise (3), Translucence
Min/Max (2)

‘Wood 3 Scale, XY Ratio, Offset

Grass 6 Wave Scale, Wave Distortion, Musgrave Scale, Musgrave Distortion, Roughness Min/Max (2), Translucence

Leaf 2 Base Color, Vein Color

Flower 5 Diffuse Color, Translucent Color, Translucence, Center Colors (2), Center Color Coeff.

Coral Shader 5 Bright Color, Dark Color, Light Color, Fresnel Color, Musgrave Scale

Slime Mold 7 Edge Weight, Spline Parameter Cutoff, Seedlings Count, Min Distance, Bright Color, Dark Color, Musgrave
Scale

Lichen, Moss 6 Bright Color, Dark Color, Musgrave Scale, Density, Min Distance, Instance Scale

Bird 7 Bird Type, Head Ratio, Stripe Width, Stripe Noise, Neck Ratio, Colorl, Color2.

Bone 3 Bump Scale, Bump Frequency, Bump Offset.

Chitin 3 Boundary Width, Noise Weight, Thorax Size.

Horn 8 Noise Scales (2), Noise Details (2), Mapping Control Points (4)

Reptile Brown 3 Circle Scale, Circle Boundary, Noise

Fish Body 7 Scale Size, Scale Noise, Fish Type, Scale Offset, Colorl Ratio, Color2 Ratio, Noise

Fish Fin 7 Offset Z, Offset Y, Shape, Bump Noise, Fin Type, Bump Weight, Transparency

Giraffe 4 Scale, Noise, Circle Width, Belly

Reptile 3 Scale, Offset, Noise

Reptile Gray 2 Noisel, Noise2

Reptile 2-Color 2 Colorl, Color2

Scale 3 Scale Size, Scale Noise, Scale Rotation

Slimy 2 Scale, Offset

Spot Sparse 3 Spot Scale, Colorl, Color2

3-Color Spots 2 Spotl Ratio, Spot2 Ratio

Tiger 4 Belly, Stripe Distortion, Stripe Frequency, Stripe Shape

2-Color Spots 4 Offset, Spot Scale, Ratio, Noise

Mollusk 8 UV Pattern Ratio, Scale, Distortion, Pattern Type, Hue Range, Saturation Range, Value Range, Colors Per
Pattern

Num. Generators: 50 Total: 271 ‘

Table 3. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our

Material Generators.



Interpretable

DOF Named Parameters

Terrain Generators

3D Noise, Wind-Eroded Rocks
Caves

Voronoi Rocks, Grains

Sand Dunes

Mountains, Floating Islands
Coast line

Ground Slope

Still Water, Ocean
Atmosphere

Tiled Landscape

Cavern Size, Tunnel Frequency, Fork Frequency
Rock Frequency, Warping Frequency

Dune Frequency, Warping Frequency

Mountain Frequency, Num. Scales

Coast curve frequency, Height mapping function

[o ) =l elell SH SN SN SN E=]

Scene Types (Arctic, Canyon,
Cave, CIliff, Waterfall, Coast,
Desert, Mountain, Plain, River,
Underwater, Volcano)

Tile Types, Tile Heights, Tile Frequency, Element Probabilities, Water Level, Snow

Num. Generators: 26 ‘ DOF: 17 ‘

Table 4. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Terrain
Generators. Terrain is heavily simulation and noise-based, so has few interpretable DOF but uncountable internal complexity.

Lighting, Weather Interpretable

& %JluidgGenerators D01r3p Named Parameters

Dust, Rain, Snow, Windy | 6 Density, Mass, Lifetime, Size, Damping, Drag,

Leaves

Cumulus, Cumulonimbus, Stra- | 13 Density, Anisotropy, Noise Scale, Noise Detail, Voronoi Scale, Mix Factor, Increased Emission, Angular

tocumulus, Altocumulus Density, Mapping Curve (6)

Atmospheric Fog, Dust 5 Density Min, Density Max, Color, Noise Scale, Anisotropy

Lava/Water 6 Viscocity, Viscocity Exponent, Surface Tension, Velocity Coord, Spray Particle Scale, Flip Ratio

Fire/Smoke 12 Max Temp, Gas Heat, Bouyancy, Burn Rate, Flame Vorticity, Smoke Vorticity, Dissolve Speed, Noise Scale,
Noise Strength, Surface Emission, Turbulence Scale, Turbulence Strength

Sky Light 8 Overall Intensity, Sun Size, Sun Intensity, Sun Elevation, Altitude, Air Density, Dust Density, Ozone Density

Caustics 5 Scale, Sharpness, Coordinate Warping, Power, Spotlight Blending

Glowing Rocks 3 Wattage, Colors, Shape Distortion

Camera Lighting (Flashlight, | 3 Wattage, Light Size, Blending

Area Light)

Num. Generators: 19 ‘ DOF: 61 ‘

Table 5. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our
Lighting, Weather and Fluid Generators

Rock Generators Interpretable Named Parameters
DOF
Rocks 3 Aspect Ratio, Deform, Roughness
Stalagmite / Stalactite 3 Num. Extrusions, Length, Z Offset Variance
Boulder 6 Initial Vertices Count, Is Slab, Large Extrusion Probability, Small Extrusion Probability, Large Extrusion
Distance, Small Extrusion Distance
Num. Generators: 4 | DOF: 12 |

Table 6. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Rock
Generators.



(P}l:rrllérictg;lderwater ]I;lg:;p retable Named Parameters

Flower 8 Center Radius, Petal Dimensions (2), Seed Size, Petal Angle Range (2), Wrinkle, Curl

Maple 7 Stem Curve Control Points, Stem Rot. Angle, Polar Mult. X, X Wave Control Points, Y Wave
Control Points, Warp End Rad., Warp Angle

Pine Midpoint (2), Length, X Angle Mean

Broadleaf 14 Midrib Length, Midrib Width, Stem Length, Vein Asymmetry, Vein Angle, Vein Density,
Subvein Scale, Jigsaw Scale, Jigsaw Depth, Midrib Control Points, Shape Control Points, Vein
Control Points, Wave X, Wave Y

Ginko 11 Stem Control Points, Shape Curve Control Points, Vein Length, Blade Angle, Polar Multiplier,
Vein Scale, Wave, Scale, Margin Scale, X Wave Control Points, Y Wave Control Points

Pinecone 13 Bud Float Curve Angles, Bud Float Curve Scales, Bud Float Curve Z Displacements, Bud
Instance Rotation Perturbation, Bud Instance Probability, Bud Instance Count, Profile Curve
Radius, Max Bud Rotation, Rotation Frequency, Stem Height, Bright Color, Dark Color ,
Musgrave Scale

Urchin 12 Subdivision, Z Scale, Bevel Percentage, Spike Probability, Girdle Height, Extrude Height,
Spike Scale, Base Color, Girdle Color, Spike Color, Transmission, Subsurface Ratio

Seaweed 7 Ocean Current, Deform Angle, Translation Scale, Expansion Scale, Bright Color, Dark Color,
Musgrave Scale

Jellyfish 16 Cap Height, Cap Scale, Cap Perturbation Scale, Long Opaque Tentacles Count, Short Trans-
parent Tentacles Count, Arm Screw Angle, Arm Screw Offset, Arm Taper Factor, Arm Dis-
placement Strength, Arm Min Distance, Arm Placement Angle Threshold, Bright Color, Dark
Color, Transparent Color, Fresnel Color, Musgrave Scale

Kelp 14 Ocean Current, Axis Shift, Axis Length, Axis Noise Stddev, Leaf Scale, Leaf Float Curve
Length, Leaf Float Curve Width, Leaf Float Curve Z Displacement, Leaf Rotation Perturb,
Leaf Tilt, Leaf Instance Probability, Leaf Instance Rotation Stride, Leaf Instance Rotation
Interpolation Factor, Leaf Instance Count

Shells (Scallop, Clam, Mussel) | 9 Top Control Point, Shell Interpolation Ratio, Shell Float Curve Angles, Shell Float Curve
Scales, Radial Groove Scale, Radial Groove Frequency, Hinge Length, Hinge Width, Angle
Between Shells

Snail (Volute, Nautlius, Conch) 8 Cross Section Affine Ratio, Cross Section Spiky Perturbation, Cross Section Concavity, Lateral
Movement, Longitudinal Movement, Rotation Frequency, Scaling Ratio, Loop Count

Reaction Diffusion Coral 10 Intialization Bump Count, Initialization Bump Stride, Timesteps, Step size, Diffusion Rate A,
Diffusion Rate B, Feed Rate, Kill Rate, Perturbation Scale, Smooth Scale

Tube Coral 6 Face Perturbation, Short Extrude Length Range, Long Extrude Length Range, Extrusion
Direction Perturbation, Drag Direction, Extrusion Probability

Laplacian Coral 8 Timesteps, Kill Rate, Step size, Tau, Eps, Alpha, Gamma, Equilibrium Temperature

Tree Coral 9 Branch Count, Secondary Branch Count, Tertiary Branch Count, Horizontal Span, Length,
Secondary Length, Tertiary Length, Base Radius, Radius Decay Ratio

Diff. Growth Coral 8 Colony Count, Max Polygons, Noise Factor, Step Size, Growth Scale, Drag Vector, Replusion
Radius, Inhibit Shell Factor

Coral Tentacles 7 Min Distance, Z Angle Threshold, Radius Threshold, Density, Branch Count, Branch Length,
Color

Grass Tuft 10 Num. Blades, Length Std., Curl Mean, Curl Std., Curl Power, Blade Width Variance, Taper
Mean, Taper Variance, Base Spread, Base Angle Variance

Fern 15 Pinna Rotation (2), Pinnae Rotation (2), Pinnae Gravity, Age, Age Variety, Num Pinna, Pinnae
Contour, Num Pinnae Varieties, Num Leaves, Leaf Width Randomness, Num Pinnae, Pinnae
Rotation Randomness (2),

Mushroom 17 Cross Section Float Curve Angles, Cross Section Float Curve Scales, Cross Section Center
Offset, Cross Section Z Rotation, Stem Length, Stem Radius, Cap Groove Ratio, Cap Scale
Ratio, Cap Radius Float Curve Height, Cap Radius Float Curve Radius, Has Web, Umbrella
Radius, Umbrella Height, Bright Color, Dark Color , Light Color, Musgrave Scale

Flower Stem 15 Branch Leaf Rotation, Branch Leaf Instance, Branch Stem Radius, Branch Rotation Coeff,
Branch Leaf Density, Stem Branch Density, Stem Branch Scale, Stem Branch Range, Stem
Leaf Instance, Stem Leaf Rotation, Stem Flower Instance, Stem Flower Scale, Stem Rotation
Coeff. STem Radius, Num Versions, Rotation Z

Cactus Spikes 6 Branches Count, Secondary Branches Count, Min Distance, Top Cap Percentage, Density,
Color

Globular Cactus 5 Groove Scale, Groove Count, Rotation Frequency, Profile Curve Height, Profile Curve Radius

Columnar Cactus 9 Radius Decay Branch, Radius Decay Root, Radius Smoothness Leaf, Branch Count, Nodes
Per Branch, Nodes Per Second Level Branch, Base Radius, Perturbation Scale, Groove Scale

Pricky Pear Cactus 5 Leaf Profile Curve Width, Leaf Profile Curve Height, Leaf Instance Scale Ratio, Leaf Instance
Placement Angles, Leaf Instance Count

Num. Generators: 30 | DOF:258 |

Table 7. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Plant
and Underwater Invertebrate Generators.



Creature Generators

Interpretable
DOF

Named Parameters

Geonodes Quadruped Body 12 Start Rad., End Rad., Ribcage Proportions (3), Flank Proportions (3), Spine Coeffs (3), Aspect Ratio

Geonodes Bird Body 3 Start Rad., End Rad. Aspect Ratio, Fullness

Geonodes Carnivore Head 15 Start Rad., End Rad., Snout Proportions (3), Aspect Ratio, Lip Muscle Coeff. (3) Jaw Muscle Coeff. (3),
Forehead Muscle Coeft (3)

Geonodes Neck 5 Start Rad. End Rad., Neck Muscle Coeffs. (3)

NURBS Bodies/Heads (Carni- | 8 Start/End Dims (4), Proportions, Angle Offsets, Profile Offset, Bump Offset,

vore, Herbivore, Fish, Beetle

and Bird)

Jaw 9 Radl1, Rad2, Width Shaping, Canine Size, Incisor Size, Tooth Density, Tooth Crookedness, Tongue Shaping,
Tongue X Scale

QuadrupedBackLeg 15 Start Rad., End Rad., Aspect Ratio, Thigh Coeffs (6), Calf Coeffs (6),

QuadrupedFrontLeg 21 Start Rad., End Rad., Aspect Ratio, Shoulder Coeffs. (6), Forearm Coeffs (6), Elbow Coeffs (6)

Bird Leg 9 Start Rad., End Rad., Aspect Ratio, Thigh Coeffs (3), Shin Coeffs (3)

Insect Leg 9 Start Rad., End Rad., Carapace Rad. Spike Length, Spike Start Rad., Spike End Rad., Spike Range (2), Spike
Density

Ridged Fin 10 Width, Roundness, Ridge Frequency, Offset Weight (2), Ridge Rot., Affine (2), Noise Ratio (2)

Feather Tail 9 Feather Dims (3), Max Rotation (3), Rotation Randomness (3)

Feather Wing 7 Start Rad., End Rad., Feather Density, Feather Form Sculpting, Wing Extendedness, Feather Rot. Randomness
2

Beak 17 Curve Y, Curve Z, Hook Coeff. (2), Hook scale (2), Hook Pos. (2), Hook Thickness (2), Crown Scale, Crown
Coeff. (2), Bump Scale, Bump L, Bump R, Sharpness

MammalEye 9 Radius, Eyelid Thickness, Eyelid Fullness, Tear Duct Placement (3), Eye Corner Placement (3)

Ear 5 Start Rad., End Rad., Depth, Thickness, Curl Angle

Insect Mandible 4 Start Rad, End Rad, Curl, Aspect Ratio

Nose 3 Radius, Nostril Size, Smoothness

Hoof 8 Claw Y Scale, Claw Z Scale, Claw Sag, Angle Length, Angle Rad. Start, Ankle Rad. End, Upper Shape,
Lower Shape

Horn 6 Rad. Start, Rad. End, Ridge Thickness, Ridge Density, Ridge Depth, Height

Foot 12 Start Rad., End Rad., Toe Density, Toe Dimensions (3), Toe Splay, Footpad Radius, Claw Curl, Claw
Dimensions (3)

Tail 4 Start Rad., End Rad., Curl, Aspect Ratio

Cotton, Skin, Rubber Simula- | 8 Max Bending Stiffness, Max Compression Stiffness, Goal Spring Force, Pin Stiffness, Shear Stiffness (2),

tion Tension Stiffness, Pressure

Running Animation 6 Steps Per Second, Stride Length, Gait spread, Stride Height, Upturn, Downstroke

Short Hair, Fluffy Hair, Feath- | 18 Clump Num., Avoid Eyes Dist., Avg. Length, Avg. Puff, Length Noise (2), Puff Noise (2), Combing, Strand

ers Noise (3), Tuft Spread, Tuft Clumping, Hair Radius, Intra-clump Noise, Length Falloff, Roughness

Carnivore Genome 15 Head Ratio, Head Attachment, Jaw Ratio, Jaw Attachment, Eye Attachment (3), Nose Attachment, Ear
Attachment (3), Shoulder Dist., Shoulder Splay, Leg Ratio

Herbivore Genome 22 Neck Start T., Hoof Angle, Foot Angle, Head Interp Temp., Jaw Ratio, Jaw Attachment, Eye Attachment
(3), Nose Attachment, Ear Attachment (3), Shoulder Dist., Shoulder Splay, Leg Ratio, Include Nose, Include
Horns, Horn Attachment (3), Body Interp Temp

Bird Genome 17 Head Ratio, Head Attachment, Tail Attachment (2), Leg Length Ratio, Foot Size Ratio, Leg Attachment (3),
Wing Length Ratio, Wing Attachment (3), Head Ratio, Eye Attacment (3)

Insect Genome Leg Density, Leg Splay, Leg Length Ratio, Include Mandibles, Mandible Attachment (3), Has Hair

Fish Genome 11 Dorsal Fin Ratio, Pelvic Fin Ratio, Pectoral Fin Ratio, Hind Fin Ratio, Fin Attachment (3), Eye Attachment (3)
Body Interp Temp.

Random Genome 10 Has Wings, Locomotion Type, Hair Type, Interp Temperature, Head Type, Has Eyes, Nose Type, Has Jaw, Has
Ears, Has Horns

Num. Generators: 39 DOF:315 |

Table 8. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our

Creature Generators.



Interpretable

Tree Generators Named Parameters

DOF
Random Tree, Pine Tree, Bush | 26 Growth Height, Trunk Warp, Num. Trunks, Branching Start, Branching Angle, Branching Density, Branch
Length, Branch Warp, Pull Dir. Vertical, Pull Dir. Horizontal, Outgrowth, Branch Thickness, Twig Density,
Twig Scale, Twig Pts, Twig Branching Start, Twig Rot. Randomness, Twig Branching Density, Twig Init
Z,Twig Z Randomness, Twig Subtwig Size, Twig Subtwig Momentum, Twig Subtwig Std., Twig Size Decay,
Twig Pull Factor, Space Colonization Shape
Num. Generators: 3 | DOF: 26 |

Table 9. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Tree
Generators.

Interpretable

Scene Composition Generators Named Parameters

DOF
Scene  Generators  (Arctic, | 110 Asset/Scatter inclusion probabilties (39), Num. Creature/Plant Subspecies (4), Noise Mask Scales (30), Mask
Canyon, Cave, Cliff, Coast, Tapering Coeff. (12), Normal Mask Thresholds (14), Placement Densities (5), Placement Habitats (6)
Desert, Forest, Mountain, Plain,
River, Under Water)
Num. Generators: 11 | DOF: 110

Table 10. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Scene
Composition Configs. Each config references a terrain composition generator from Fig. EL and specifies a realistic distribution of other assets
to create a fully realistic natural environment.
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