
PACO: Parts and Attributes of Common Objects (Supplementary)

Vignesh Ramanathan∗1 Anmol Kalia∗1 Vladan Petrovic∗1 Yi Wen1 Baixue Zheng1

Baishan Guo1 Rui Wang1 Aaron Marquez1 Rama Kovvuri1 Abhishek Kadian1

Amir Mousavi2† Yiwen Song1 Abhimanyu Dubey1 Dhruv Mahajan1

1Meta AI 2Simon Fraser University

Figure 1. Sample web images used to mine part vocabulary. top-
left: “Parts of a computer mouse”, top-right: “Parts of a screw-
driver”, bottom-left: “Parts of a slipper” and bottom-right: “Parts
of a vase”.

Appendix

A. Dataset construction

A.1. Parts vocabulary selection

We show sample images obtained by querying the web
for “parts of an object category” for different object cate-
gories in Fig. 1. We see that the images provide a good
vocabulary of parts for each of the objects. Alongside, they
also provide clear pointers to the regions of the object the
parts correspond to. We use these as reference images for
annotators wherever such well defined part images are avail-
able from the web. Additionally, we also manually define
parts for few objects when the web images aren’t illustrative
enough. In such cases, we came up with reasonable names
for different regions of an object along with reference im-
ages to guide the annotators. Such manually defined parts
with sample reference images are shown in Fig. 2 as well.
Tab. 1 contains the final taxonomy of parts for the 75 object
classes.

∗ Equal contribution † Work done during internship at Meta AI

Figure 2. Example object category with manually defined parts.
For the object “trash can”, we manually defined all the parts with
illustrative reference for the annotators as shown.

A.2. Attribute vocabulary selection

For zero-shot instance recognition tasks, both object and
part level attributes are important. In order to identify the
set of attributes that we should annotate that are sufficient
for the tasks, we conducted an in-depth user study.

We consider the following 5 attributes types: color,
shape, reflectance, materials and patterns & marking with
the aim of finding a small subset that is sufficient to dis-
criminate between the instances. We show each user two
different instances A and B of the same object (green mug
and red mug for example), segmentation mask of common
object parts between this pair. We use PACO-Ego4D data
for this purpose. For object level attributes, we ask anno-
tators to provide at most one difference (if any) for each
attribute type. For part level attributes, annotators are asked
to compare only between the common parts of the instance
pair and they are allowed to annotate up to 3 part level at-
tribute differences for one pair. For an attribute difference,
if the discriminative attributes for A and B is nameable (e.g.
A is red and B is blue), annotators will need to write down
the attribute names. Otherwise, a freeform explanation is re-
quired to articulate this difference, particularly for unname-
able attributes (e.g. a unique pattern, an irregular shape,
etc.); For each object category we sampled 106 pairs each
which are annotated by 3 annotators.

1

Objects Parts Taxonomy

basket bottom, handle, inner side, cover, side, rim, base
belt buckle, end tip, strap, frame, bar, prong, loop, hole
bench stretcher, seat, back, table top, leg, arm
bicycle stem, fork, top tube, wheel, basket, seat stay, saddle, handlebar, pedal, gear, head tube, down tube, seat tube
blender cable, handle, cover, spout, vapour cover, base, inner body, seal ring, cup, switch, food cup
book page, cover
bottle neck, label, shoulder, body, cap, bottom, inner body, closure, heel, top, handle, ring, sipper, capsule, spout, base, punt
bowl inner body, bottom, body, rim, base
box bottom, lid, inner side, side
broom lower bristles, handle, brush cap, ring, shaft, brush
bucket handle, cover, body, base, inner body, bottom, loop, rim
calculator key, body
can pull tab, body, base, inner body, bottom, lid, text, rim
car (automobile) headlight, turnsignal, tank, windshield, mirror, sign, wiper, fender, trunk, windowpane, seat, logo, grille, antenna, hood, splashboard, bumper,

rim, handle, runningboard, window, roof, wheel, taillight, steeringwheel
carton inner side, tapering top, cap, bottom, lid, text, side, top
cellular telephone button, screen, bezel, back cover
chair stretcher, swivel, apron, wheel, leg, base, spindle, seat, back, rail, stile, skirt, arm
clock cable, decoration, hand, pediment, finial, case, base
crate bottom, handle, inner side, lid, side
cup inner body, handle, rim, base
dog teeth, neck, foot, head, body, nose, leg, tail, ear, eye
drill handle, body
drum (musical instrument) head, rim, cover, body, loop, lug, base
earphone headband, cable, ear pads, housing, slider
fan rod, canopy, motor, blade, base, string, light, bracket, fan box, pedestal column
glass (drink container) inner body, bottom, body, rim, base
guitar key, headstock, bridge, body, fingerboard, back, string, side, pickguard, hole
hammer handle, face, head, grip
handbag zip, inner body, handle, bottom, body, rim, base
hat logo, pom pom, inner side, strap, visor, rim
helmet face shield, logo, inner side, strap, visor, rim
jar handle, body, base, inner body, bottom, lid, sticker, text, rim
kettle cable, handle, lid, body, spout, base
knife handle, blade
ladder rail, step, top cap, foot
lamp shade inner side, cable, pipe, shade, bulb, shade cap, base, switch, finial
laptop computer cable, camera, base panel, keyboard, logo, back, screen, touchpad
microwave oven inner side, door handle, time display, control panel, turntable, dial, side, top
mirror frame
mouse (computer equipment) logo, scroll wheel, body, right button, wire, side button, left button
mug handle, body, base, inner body, bottom, text, drawing, rim
newspaper text
pan (for cooking) bottom, handle, inner side, lid, side, rim, base
pen cap, grip, barrel, clip, tip
pencil body, lead, eraser, ferrule
pillow embroidery
pipe nozzle, colied tube, nozzle stem
plastic bag inner body, handle, text, hem, body
plate top, bottom, inner wall, body, rim, base
pliers jaw, handle, joint, blade
remote control logo, back, button
scarf fringes, body
scissors handle, screw, finger hole, blade
screwdriver blade, handle, tip, shank
shoe toe box, tongue, vamp, outsole, insole, backstay, lining, quarter, heel, throat, eyelet, lace, welt
slipper (footwear) toe box, vamp, outsole, strap, insole, lining
soap neck, label, shoulder, body, sipper, capsule, spout, push pull cap, cap, base, bottom, closure, punt, top
sponge rough surface
spoon neck, handle, bowl, tip
stool seat, leg, step, footrest
sweater shoulder, sleeve, neckband, hem, body, yoke, cuff
table stretcher, drawer, inner wall, shelf, apron, wheel, leg, top, rim
tape (sticky cloth or paper) roll
telephone button, screen, bezel, back cover
television set bottom, button, side, top, base
tissue paper roll
towel body, terry bar, hem, border
trash can label, body, wheel, inner body, bottom, lid, pedal, rim, hole
tray bottom, inner side, outer side, rim, base
vase neck, handle, foot, body, mouth
wallet inner body, flap
watch buckle, case, dial, hand, strap, window, lug
wrench handle, head

Table 1. Parts taxonomy

Un-nameable shape attributes. Annotators noted that > 50% shape differences contain unnameable attributes.

2

Attribute Type Attribute Classes

Color black, light blue, blue, dark blue, light brown, brown, dark brown, light green, green, dark green, light grey, grey, dark grey, light orange, orange,
dark orange, light pink, pink, dark pink, light purple, purple, dark purple, light red, red, dark red, white, light yellow, yellow, dark yellow

Pattern-Markings plain, striped, dotted, checkered, woven, studded, perforated, floral, logo, text
Material stone, wood, rattan, fabric, crochet, wool, leather, velvet, metal, paper, plastic, glass, ceramic
Reflectance opaque, translucent, transparent

Table 2. Attributes taxonomy

Annotators reported these differences as very difficult to de-
scribe with words. Hence, we removed “shape” from the fi-
nal list of attribute. Nevertheless, even in the absence of
shape we note that the combination of the remaining at-
tributes are seen to be sufficiently discriminative to differ-
entiate the object instances.

Attributes Coverage. We try to identify the discrimi-
native power of different subsets of attributes and identify
the best subset to construct our attributes taxonomy. We
adopted a greedy algorithm to study attribute sets. We start
with one attribute and gradually add one best attribute at a
time to incrementally construct an attribute set at each step.
More specifically at a give step, for each attribute, we check
how many new pairs can be distinguished if we introduce
that attribute to the existing set of attributes. The attribute
that distinguishes highest number of pairs is selected first,
followed by the next best attribute in a greedy fashion. We
define coverage of a set of attributes as the total number of
object pairs that can be distinguished by the attributes (both
with object-level attributes and/or part-level attributes).

We observed that coverage plateaus at 40 attributes. 98%
of object instance pairs could be distinguished only using
the 55 attributes included in our final version of PACO. Both
object and part attributes were marked as important for dif-
ferentiating instance pairs. 18% instance pairs could only
be distinguished by object level attributes, while 10% could
only be distinguished by part level attributes. Color is the
biggest discriminative attribute type for instance recogni-
tion, differentiating at least 75% instance pairs with both
object and part level color differences.

The final taxonomy of attributes is shown in Tab. 2.

A.3. Annotation pipeline

A.3.1 Instance annotation

To enable appearance based k-shot instance detection
experiments we have annotated instances with unique
instance IDs. For LVIS (image) dataset, we assume image
of each object to be a separate instance. We inspected
several images manually and found this assumption to be
true. In Ego4D videos from which we sourced the frames,
however, the same instance can occur multiple times at
different timestamps and we had to set up an annotation
task to properly group occurrences (frames) into instances.
There are two challenges that we faced: (a) the same video

can contain different instances of the same object class
and those have to be split into separate instance IDs, and
(b) Ego4D videos are fragmented and multiple videos can
contain the same instances so occurrences from different
videos had to be merged. To this end we performed a
three-step splitting/merging annotation pipeline as follows.

Split: Using (video, category) pair as a good first guess for
instance ID, we crop all the bounding boxes (occurrences)
of an object category from frames that belong to the same
video and show them to annotators. We then ask the
annotators to split those crops into subgroups that belong
to the same real instance. In case number of boxes is more
than 16, we split them in to groups of at most 16 and then
send them for annotation. This is then repeated for all
object categories and all videos. All annotation jobs are
reviewed by 3 annotators and a subset majority voting is
performed to aggregate annotations. The majority voting is
done by finding the maximum overlap between subgroups
for each pair of annotators using Hungarian algorithm
(bipartite matching).

Merge: After the splitting phase the annotated groups
are very coherent, i.e., the majority of occurrences in the
same group belong to the same instance. However due
to video fragmentation and additional limitation on the
number of boxes that can be shown to annotators (16)
many occurrence groups belong to the same instance and
need to be merged. To address this we use similarity in
DINO model [1] embedding space. Each group from the
splitting phase is represented by a bounding box crop with
embedding closest to the group median. For each group
representative gi we find 16 nearest neighbors and ask
annotators to validate which of the neighbors belong to
the same instance as gi. Similar to the splitting phase,
responses from 3 annotators are aggregated by finding
the maximum overlap between any two annotators. We
repeat this for every group. We then build a graph by
considering each group as a node with an edge between
two nodes if they belong to the same instance. Nodes i
and j are connected if gj was marked as belonging to the
same instance as gi and gi was marked as belonging to
the same instance as gj . Finally, we find connected com-
ponents and assign a unique instance ID to each component.

3

Figure 3. Distribution of mIoU with gold-standard part masks for
different object classes. 90% of the object classes have mIoU ≥
0.75 with the gold-standard masks.

Final split: We noticed some over-merging of instances,
especially for instances with large number of occurrences.
We therefore performed a third step where we showed in-
stances with more than 10 occurrences to expert annotators
and asked them to split them into subgroups. Each sub-
group at the output of this step is then marked as a separate
instance. There was no limit of 16 occurrences in this step,
complete instances were shown in each annotation job.

A.3.2 Managing annotation quality

Fig. 3 shows the mIoU of annotated masks with gold set
masks for each object category.

B. Dataset annotation examples

Object, part, and attribute annotations are shown in
Figs. 4 and 9. Object and part segmentation masks are used
to crop out segments for annotations with a specific attribute
and shown in Fig. 4 for a subset of attributes. Fig. 9 shows
various examples for PACO annotations. Full images are
shown with object annotations (bounding boxes only so at-
tributes are visible) in the left copy of the image and part
annotations (segmentation masks) in the right copy of the
image. Object and part attribute annotations are listed be-
low each image pair.

C. Object statistics

Fig. 5 shows the distribution of instances across the 75
object categories in PACO-LVIS and PACO-EGO4D. All
75 object classes in PACO-LVIS and 71 classes in PACO-
EGO4D have ≥ 10 instances. We observe the usual non-
uniformity in the frequency for each category. For object
category ‘drill’ with the lowest frequency in PACO-LVIS,
we have 23 instances, and for ‘scarf’ with the lowest fre-
quency in PACO-EGO4D data, we have 7 instances.

mask AP box AP
Model AP obj AP opart AP obj AP opart

R50 FPN 31.2 ± 0.1 12.1 ± 0.1 34.3 ± 0.2 15.7 ± 0.2
R101 FPN 32.0 ± 0.3 12.5 ± 0.1 35.2 ± 0.3 16.2 ± 0.2
ViT-B FPN 35.5 ± 0.5 14.1 ± 0.3 39.2 ± 0.5 18.1 ± 0.5
ViT-L FPN 44.7 ± 0.4 18.1 ± 0.3 49.6 ± 0.4 22.9 ± 0.4

Table 3. Object and object-part segmentation results for mask-
RCNN and ViT-det models trained jointly on PACO-LVIS and
PACO-EGO4D and evaluated on PACO-LVIS

mask AP box AP
Model AP obj AP opart AP obj AP opart

R50 FPN 16.6 ± 0.3 5.6 ± 0.0 18.9 ± 0.3 8.2 ± 0.1
R101 FPN 17.9 ± 0.2 6.0 ± 0.1 20.3 ± 0.2 8.7 ± 0.1
ViT-B FPN 18.6 ± 0.2 7.0 ± 0.2 20.7 ± 0.3 10.1 ± 0.1
ViT-L FPN 27.9 ± 0.3 10.5 ± 0.3 30.6 ± 0.2 14.8 ± 0.4

Table 4. Object and object-part segmentation results for mask-
RCNN and ViT-det models trained jointly on PACO-LVIS and
PACO-EGO4D and evaluated on PACO-EGO4D

D. Additional part segmentation and attribute
prediction results

In Fig. 6, we show the architecture of the models used to
train the joint segmentation and attribute prediction models.
For our experiments, we vary the backbones across R-50,
R-101 and two ViT-det [6] model backbones.

Examples of predictions from the ViT-L model are
shown in Fig. 10.

D.1. Joint training on PACO-LVIS and PACO-
EGO4D

In addition to models trained on PACO-LVIS, we also
train models for part segmentation and attribute prediction
jointly trained on both PACO-LVIS and PACO-EGO4D. We
evaluate the jointly trained models on the test splits for both
the datasets and present the results for part segmentation in
Tab. 3 and Tab. 4. Tab. 5 and Tab. 6 show the results on
attribute prediction. We notice that the results on PACO-
EGO4D overall are lower compared to those for PACO-
LVIS. This is indicative of the challenges in video domain
particularly for ego-centric videos. Also, we note that the
jointly trained model offers a small improvement compared
to model trained only on PACO-LVIS, when evaluate on
PACO-LVIS in Tab. 5. We observed 0.2% gain for R50-
FPN and R101-FPN and 0.8% improvement for ViT-B FPN,
compared to model trained only with PACO-LVIS.

D.2. val to test results transfer

Here, we wish to study if observations made from the
val split are similar to the test split. This would help us
verify if val split can be used for model tuning. In Tab. 7
and Tab. 8, we observe that the ranking of results is consis-

4

Figure 4. Randomly sampled object (top row) and part (bottom row) masks for a subset of attributes (one attribute per column).

Model AP obj
att AP obj

col AP obj
pat AP obj

mat AP obj
ref AP opart

att AP opart
col AP opart

pat AP opart
mat AP opart

ref

R50 FPN 13.8 ± 0.1 10.6 ± 0.4 14.9 ± 0.7 9.7 ± 0.2 19.8 ± 0.9 9.7 ± 0.1 10.3 ± 0.5 10.7 ± 0.5 7.2 ± 0.2 10.7 ± 0.2
R101 FPN 14.0 ± 0.4 11.2 ± 0.3 14.2 ± 0.9 9.8 ± 0.4 20.6 ± 1.6 10.1 ± 0.2 10.8 ± 0.4 11.0 ± 0.3 7.2 ± 0.0 11.3 ± 0.3
ViT-B FPN 16.2 ± 0.6 13.2 ± 0.4 16.7 ± 0.9 13.3 ± 0.3 21.4 ± 1.4 11.5 ± 0.1 12.0 ± 0.1 12.6 ± 0.2 9.4 ± 0.0 11.8 ± 0.4
ViT-L FPN 18.8 ± 0.7 15.6 ± 0.2 19.6 ± 1.1 15.7 ± 0.6 24.5 ± 1.2 14.1 ± 0.1 15.0 ± 0.3 15.2 ± 0.7 11.6 ± 0.1 14.3 ± 0.2

Table 5. Attribute prediction results for a mask R-CNN and ViT-det model trained jointly on PACO-LVIS and PACO-EGO4D and evaluated
on PACO-LVIS. The results are shown for box AP for both object attributes and object-part attributes prediction.

Figure 5. Distribution of instances across the 75 object categories.

tent across val and test. Across different architectures
the trends are similar. This study is similar to what is re-
ported in LVIS [3] for object detection.

D.3. Object segmentation only models

In this section, we explore the effect of joint training on
multiple tasks (segmentation and attribute prediction) to-
gether on object segmentation results. As an ablation, we
train models on only the task of object segmentation for
two backbones: R-50 and ViT-L. We report our observa-
tions in Tab. 9. For the smaller R-50 backbone, the object
segmentation performance deteriorates slightly when joint
training with multiple tasks. However, surprisingly for the
higher capacity ViT-L backbone, object segmentation im-
proves considerably when training on the joint task.

D.4. Attribute prediction bounds

In the main paper, we report the bounds on AP obj
att . The

lower bound is calculated by assuming that the score for

the object-attribute prediction is the same as the score for
the object prediction, i.e., the lower bound performance is
the same as if only the detector was used for attribute pre-
diction. The upper bound performance assumes perfect at-
tribute prediction by setting the score for gt attribute to 1.0
and any false positive attribute predictions to 0.0 for a given
object prediction. Here, object refers to both object and
object-parts.

E. Additional zero-shot instance detection re-
sults

We show results for FPN and cascade models trained
and evaluated on PACO-LVIS in Tab. 10. Cascade mod-
els improve the performance for all but the largest model.
In Tab. 11 we also show the results from models trained on
the joint PACO dataset and evaluated on PACO-LVIS and
PACO-EGO4D test sets. PACO-EGO4D is a more chal-
lenging dataset, zero-shot results are in line with attributes
prediction results shown in Tab. 6.

F. Ablation studies for zero-shot instance de-
tection

We also measure the importance of different aspects such
as object category, object-part category, object colors, part
colors and non-color attributes for this end to end task by in-
crementally including them over a vanilla detection model
in Tab. 12. As expected, the object-only performance is
poor and each additional component improves the instance
detection performance.

5

Figure 6. Our model adds an attribute prediction head to Mask R-CNN for joint instance segmentation with attribute prediction

Model AP obj
att AP obj

col AP obj
pat AP obj

mat AP obj
ref AP opart

att AP opart
col AP opart

pat AP opart
mat AP opart

ref

R50 FPN 6.6 ± 0.4 5.2 ± 0.2 7.0 ± 0.3 6.6 ± 0.8 7.7 ± 0.4 5.6 ± 0.1 5.6 ± 0.5 6.6 ± 0.6 5.7 ± 0.3 4.5 ± 0.3
R101 FPN 7.3 ± 0.2 5.4 ± 0.2 7.6 ± 0.3 8.1 ± 0.5 8.2 ± 0.4 5.9 ± 0.1 5.7 ± 0.6 7.0 ± 1.1 6.1 ± 0.3 4.6 ± 0.3
ViT-B FPN 8.6 ± 0.1 6.6 ± 0.5 10.8 ± 0.7 8.7 ± 0.3 8.2 ± 0.7 7.3 ± 0.1 6.2 ± 0.8 10.7 ± 0.4 6.8 ± 0.6 5.7 ± 0.0
ViT-L FPN 11.7 ± 0.3 9.0 ± 0.1 13.1 ± 1.5 12.4 ± 0.2 12.4 ± 0.4 10.0 ± 0.5 7.8 ± 0.6 12.6 ± 2.0 9.9 ± 0.2 9.7 ± 0.3

Table 6. Attribute prediction results for a mask R-CNN and ViT-det model trained jointly on PACO-LVIS and PACO-EGO4D and evaluated
on PACO-EGO4D. The results are shown for box AP for both object attributes and object-part attributes prediction.

Model split AP obj AP opart AP obj
att AP opart

att

R50 FPN val 38.3 ± 0.4 18.4 ± 0.3 20.0 ± 0.5 17.1 ± 0.4
test 34.3 ± 0.2 15.7 ± 0.2 13.8 ± 0.1 9.7 ± 0.1

R101 FPN val 39.4 ± 0.2 18.7 ± 0.5 21.0 ± 0.9 17.3 ± 0.4
test 35.2 ± 0.3 16.2 ± 0.2 14.0 ± 0.4 10.1 ± 0.2

ViT-B FPN val 42.6 ± 0.7 20.8 ± 0.7 25.2 ± 0.5 21.0 ± 0.3
test 39.2 ± 0.5 18.1 ± 0.5 16.2 ± 0.6 11.5 ± 0.1

ViT-L FPN val 52.6 ± 0.5 25.9 ± 0.7 29.2 ± 0.6 25.9 ± 0.1
test 49.6 ± 0.4 22.9 ± 0.4 18.8 ± 0.7 14.1 ± 0.1

Table 7. We compare how object detection, object-part detection
and attribute prediction results transfer from val set to test set.
The models are trained jointly on PACO-LVIS and PACO-EGO4D
and evaluated on PACO-LVIS. The ranking is consistent across
both splits

G. From model outputs to query scores

For prediction ranking in the zero-shot instance detection
task we need query scores for each detected box. However
models trained in Sec. Sec. 5.2 produce object, part, and
attribute scores instead. In this section we provide details
of how these scores are used to obtain query scores for each
box.

Let Q be a query for an object o, with object-level at-
tributes A, parts P and part-level attributes Ap∀p ∈ P .
For example, the query “Black dog with white ear and

Model split AP obj AP opart AP obj
att AP opart

att

R50 FPN val 37.3 ± 0.7 18.6 ± 0.4 28.8 ± 3.3 21.2 ± 3.7
test 18.9 ± 0.3 8.2 ± 0.1 6.6 ± 0.4 5.6 ± 0.1

R101 FPN val 38.9 ± 0.3 19.4 ± 0.2 30.5 ± 3.4 22.7 ± 3.0
test 20.3 ± 0.2 8.7 ± 0.1 7.3 ± 0.2 5.9 ± 0.1

ViT-B FPN val 48.1 ± 0.3 24.9 ± 0.1 44.3 ± 2.2 35.5 ± 1.0
test 20.7 ± 0.3 10.1 ± 0.1 8.6 ± 0.1 7.3 ± 0.1

ViT-L FPN val 56.1 ± 0.1 30.8 ± 0.1 48.8 ± 3.1 39.8 ± 0.7
test 30.6 ± 0.2 14.8 ± 0.4 11.7 ± 0.3 10.0 ± 0.5

Table 8. We compare how object detection, object-part detection
and attribute prediction results transfer from val set to test set.
The models are trained jointly on PACO-LVIS and PACO-EGO4D
and evaluated on PACO-EGO4D. The ranking is consistent across
both splits

brown foot” corresponds to o (dog), object-level attributes
A ({“black”}), parts P ({“ear”, “foot”}), part-level at-
tributes Ap ({“white”} for “ear”, {“brown”} for “foot”).

Given such a query, we assign a query score to all object
boxes in an image. This is a two-step process. In the first
step, we associate object-parts detected by our model to the
corresponding object boxes in the image. In the second step,
we calculate the query score for each object box based on
the associated parts.
Part association. Since object-part and object boxes are
detected independently by our model, we need to associate

6

part boxes to objects first. For a given object box, consider
all part boxes where the part class corresponds to the object
class of the object box, e.g., for a “car” object box, we will
only consider predictions for “car-wheel” and not “bicycle-
wheel”. From these, select part boxes where more than 50%
of the part mask area is contained within the object mask.
Call these part boxes matched parts. The matched parts may
contain multiple occurrences of the same object-part class,
keep only the one with the highest score. This results in set
of matched parts for each object box. For some objects, we
may have no matched parts for a specific object-part (eg:
we may find no “car-wheel” matched with a “car” box).
Query score. For a given object box b, let the predicted
score for the query object category o be given by oo. Sim-
ilarly, let the predicted object attribute scores be ak for
k ∈ A. Similarly, the part scores of the matched object-
parts are given by pp for p ∈ P . These are the predicted
category scores for the matched part box corresponding to
each object-part category mentioned in the query. For an
object-part category if no part box is matched to b, this score
is set to 0. We also have attribute scores for each matched
object-part ap,k for p ∈ P, k ∈ Ap. These scores are again
set to 0 if no part box of the corresponding object-part cat-
egory is matched with b. For the query Q, the score is then
computed as follows:

s(Q, b) =

{
if |A| > 0 :

√
oo × |A|

√∏
k∈A ak

otherwise : oo

×

 if |P | > 0 :

∑
p∈P

√
pp× |Ap|

√∏
k∈Ap

ap,k

|P |
otherwise : 1

This is repeated for all queries and all detected boxes.
The above scoring function combines the scores of the

object, object-attribute, parts and part-attributes mentioned
in the query. Note that the first part of the scoring function
only combines object and object-attribute scores, while the
second part combines part and part-attribute scores. While
combining part scores we use a combination of arithmetic
and geometric means. We found this combination to pro-
vide the best results empirically.

H. Evaluation of open world detectors on zero-
shot instance detection task

In this section we give details on how we evaluated De-
tic [10] and MDETR [5] on zero-shot instance detection
task. For both projects we used code open sourced on
GitHub.

Detic supports a custom vocabulary and encodes natural
language class descriptions using pre-trained CLIP text
encoder. We used all 5k queries as custom vocabulary

mask AP box AP
Model AP obj AP obj

R50 FPN 31.2 ± 0.1 34.3 ± 0.2
R50 FPN - object only 32.4 ± 0.6 35.5 ± 0.5

ViT-L FPN 44.7 ± 0.4 49.6 ± 0.4
ViT-L FPN - object only 39.8 ± 0.1 43.6 ± 0.1

Table 9. Comparison of model performance on object segmenta-
tion when trained only on the task of object segmentation vs joint
training on object and part segmentation and attribute prediction.

so that we have prediction scores for all queries for each
detected box. Due to large vocabulary we had to increase
the number of detections per image. We experimented
with this parameter and found that 2, 000 boxes gives
the best results. We used plain query strings (e.g., “A
dog with brown ear and black neck”) from PACO dataset
as class descriptions along with 3 more prompt variants
with prefixes “A photo of”, “A close up picture of”,
and “A close up photo of” in front of the plain query
strings. The “close up” variants were an attempt to
guide text embeddings closer to a detection setup but we
didn’t see much improvement in performance. We use De-
tic LCOCOI21k CLIP SwinB 896b32 4x ft4x max-
size.pth model and report mean and standard deviation
AR@k calculated over results from these 4 prompt variants.

MDETR is geared towards referring expressions and
phrase grounding and treats each image-text pair indepen-
dently. We follow inference similar to LVIS evaluation re-
ported in the MDETR paper. Namely, for inference on
a given image, we evaluate the model on each of the 5k
queries separately, then merge the sets of boxes detected
on each of the queries and keep the boxes corresponding
to top K query scores. Unlike Detic, predicted boxes are
not shared across queries since MDETR predicts bound-
ing boxes independently for each query. As a result, we
had to increase the number of detections per image even
further to 10, 000 to obtain the best results. We also ex-
perimented with two MDETR models with R101 back-
bone 1, one trained for referring expressions task (ref-
cocog resnet101 checkpoint.pth) and the other
for LVIS few-shot task (lvis10 checkpoint.pth)
and observed that LVIS few-shot task model performs bet-
ter. We report mean and standard deviation of results from
that model over the same 4 query prompt variants as Detic.

I. Challenge test set splits
To facilitate zero-shot instance detection challenge com-

petitions on PACO-EGO4D we perform an additional split
of the test data. We split the full test dataset 50/50 to limit
the variance increase due to smaller number of queries and
call the two splits test-dev and test-std. We show

1A known issue (#86) prevented the use of ENB backbones

7

L1 queries L2 queries L3 queries all queries
Model AR@1 AR@5 AR@1 AR@5 AR@1 AR@5 AR@1 AR@5

R50 FPN 22.5 ± 0.7 39.2 ± 0.5 20.1 ± 0.4 38.5 ± 0.1 22.3 ± 0.9 44.5 ± 1.1 21.4 ± 0.6 40.9 ± 0.3
+ cascade 23.5 ± 1.4 41.1 ± 2.7 21.4 ± 2.4 40.9 ± 3.2 25.3 ± 2.7 48.1 ± 3.2 23.3 ± 2.3 43.7 ± 3.1
R101 FPN 23.1 ± 0.7 40.5 ± 1.4 20.0 ± 0.6 39.3 ± 1.0 23.1 ± 0.7 45.2 ± 0.6 21.7 ± 0.6 41.8 ± 0.8
+ cascade 26.3 ± 0.4 45.1 ± 0.5 24.0 ± 0.1 43.2 ± 0.1 26.6 ± 1.2 49.5 ± 0.8 25.4 ± 0.5 45.9 ± 0.4

ViT-B FPN 26.8 ± 0.2 45.8 ± 0.2 22.7 ± 0.5 40.0 ± 0.7 24.1 ± 0.5 42.5 ± 1.5 23.9 ± 0.4 42.0 ± 0.9
+ cascade 27.0 ± 0.4 46.1 ± 0.5 23.0 ± 0.9 40.3 ± 0.2 25.5 ± 0.8 43.1 ± 0.5 24.7 ± 0.7 42.4 ± 0.2

ViT-L FPN 35.3 ± 0.7 57.3 ± 0.6 29.7 ± 0.6 50.1 ± 0.2 31.1 ± 0.8 52.3 ± 0.9 31.2 ± 0.4 52.2 ± 0.5
+ cascade 33.8 ± 0.7 57.2 ± 0.2 29.0 ± 0.7 50.2 ± 0.2 30.1 ± 0.7 51.8 ± 1.8 30.2 ± 0.6 52.0 ± 0.6

Table 10. Zero-shot instance detection results for different query levels for FPN and cascade models from Sec. Sec. 5.2 trained and
evaluated on PACO-LVIS.

L1 queries L2 queries L3 queries all queries
Model Eval set AR@1 AR@5 AR@1 AR@5 AR@1 AR@5 AR@1 AR@5

R50 FPN PACO-LVIS 22.0 ± 0.4 39.6 ± 0.6 20.6 ± 0.5 39.0 ± 0.7 24.7 ± 1.0 45.5 ± 1.4 22.4 ± 0.3 41.6 ± 0.7
R101 FPN PACO-LVIS 23.5 ± 0.5 40.9 ± 0.4 21.2 ± 0.3 40.1 ± 0.7 24.3 ± 1.3 45.2 ± 0.9 22.8 ± 0.5 42.2 ± 0.6
ViT-B FPN PACO-LVIS 29.5 ± 0.6 49.5 ± 1.1 25.8 ± 1.4 44.9 ± 2.3 26.2 ± 1.2 45.7 ± 2.9 26.6 ± 1.1 46.0 ± 2.2
ViT-L FPN PACO-LVIS 38.0 ± 0.6 60.8 ± 1.2 33.3 ± 1.7 55.6 ± 1.9 33.1 ± 2.6 59.0 ± 2.8 34.0 ± 1.8 57.8 ± 2.1
R50 FPN PACO-EGO4D 15.4 ± 0.1 29.1 ± 0.6 13.2 ± 0.2 28.0 ± 0.9 14.4 ± 1.8 29.1 ± 1.3 14.2 ± 0.9 28.7 ± 0.8
R101 FPN PACO-EGO4D 16.3 ± 0.5 29.8 ± 0.9 15.0 ± 0.6 28.6 ± 0.7 14.2 ± 0.6 28.3 ± 0.9 14.9 ± 0.1 28.6 ± 0.5
ViT-B FPN PACO-EGO4D 13.5 ± 1.2 24.4 ± 1.3 11.0 ± 0.4 19.5 ± 0.7 9.3 ± 0.5 18.1 ± 0.5 10.6 ± 0.1 19.7 ± 0.4
ViT-L FPN PACO-EGO4D 20.8 ± 0.2 36.9 ± 0.7 19.8 ± 1.3 33.3 ± 1.3 21.4 ± 1.2 34.9 ± 0.7 20.7 ± 1.0 34.7 ± 0.9

Table 11. Zero-shot instance detection results for different query levels for FPN models from Sec. Sec. 5.2 trained on joint PACO dataset
and evaluated on PACO-LVIS and PACO-EGO4D.

all queries
Score components AR@1 AR@5

Object only 1.9 ± 0.5 8.2 ± 0.2
Object + part 2.4 ± 0.4 10.8 ± 0.9
Object + color 5.6 ± 0.5 15.5 ± 0.1

Object + attribute 8.5 ± 0.4 22.3 ± 0.2
Object + part + color 20.8 ± 0.6 40.2 ± 0.6

All 31.2 ± 0.4 52.2 ± 0.5

Table 12. Ablation study on importance of object, part, and at-
tribute predictions on zero-shot instance detection performance.
We compute metrics using only object, object + part, object +
color, object + attribute, object + part + color, and all ViT-L FPN
model scores.

results for the two splits in Tab. 13 corresponding to full
test set results in Tab. 11. As expected, the variance on the
smaller splits increases compared to the full set, however
the results on both splits and the full dataset are close and
follow similar trends.

J. Few-shot instance detection experiments

The few-shot model is a two-tower model as shown in
Fig. 7, where the (a) first tower is a detection model which
predicts object boxes in the images and (b) the second tower
is an embedding model that provides a feature embedding
for each of the predicted boxes. The two towers are learned
independently.
Query feature registration. In the few-shot setup, for each

Figure 7. The few-shot instance detection model consists of a
frozen detector and an embedding model. The detector outputs
class-agnostic bounding boxes. The embedding model takes an
image and a set of predicted bounding boxes on the image as in-
puts, and outputs embeddings for every box.

query Q we are provided a set of “query images” with one
bounding box per image for the “query” object instance. We
first extract a feature for each of query boxes only using the
embedding model. Given k query images (with bounding
box) for the query Q, we extract k query features. The fea-
tures are then averaged to obtain an average query feature
vector fQ.
Instance detection with query features. We are also pro-
vided a set of target images for each query IQ from which
another bounding box corresponding to the query needs to
be extracted. For each image I ∈ IQ, we first predict 100
bounding boxes BI using the detection tower of our model.
Each of these boxes B ∈ BI are then represented by a fea-

8

L1 queries L2 queries L3 queries all queries
Model Eval set AR@1 AR@5 AR@1 AR@5 AR@1 AR@5 AR@1 AR@5

R50 FPN PACO-EGO4D-dev 16.1 ± 0.2 29.2 ± 0.8 11.7 ± 1.1 26.4 ± 1.8 13.2 ± 2.4 27.6 ± 2.8 13.2 ± 1.3 27.5 ± 1.8
R101 FPN PACO-EGO4D-dev 15.6 ± 0.4 27.9 ± 0.6 13.3 ± 1.7 26.3 ± 1.7 13.2 ± 0.7 25.7 ± 1.3 13.7 ± 0.9 26.3 ± 1.3
ViT-B FPN PACO-EGO4D-dev 13.4 ± 0.8 23.4 ± 1.3 10.0 ± 0.8 18.3 ± 1.4 8.0 ± 0.6 14.9 ± 1.2 9.6 ± 0.7 17.6 ± 1.1
ViT-L FPN PACO-EGO4D-dev 21.7 ± 0.5 36.8 ± 1.3 20.8 ± 1.2 33.2 ± 1.2 25.0 ± 1.9 36.5 ± 1.0 23.0 ± 1.3 35.5 ± 0.9
R50 FPN PACO-EGO4D-std 14.6 ± 0.3 28.9 ± 0.8 14.9 ± 1.4 29.8 ± 1.5 15.8 ± 1.3 30.8 ± 1.4 15.3 ± 1.0 30.1 ± 1.2
R101 FPN PACO-EGO4D-std 17.1 ± 1.1 31.7 ± 1.7 16.8 ± 0.8 31.1 ± 1.2 15.3 ± 1.6 31.1 ± 1.5 16.2 ± 0.8 31.2 ± 1.0
ViT-B FPN PACO-EGO4D-std 13.6 ± 1.8 25.4 ± 1.3 12.1 ± 0.4 20.7 ± 0.2 10.8 ± 1.4 21.7 ± 0.6 11.8 ± 0.5 22.1 ± 0.4
ViT-L FPN PACO-EGO4D-std 20.0 ± 0.4 37.1 ± 0.2 18.6 ± 1.7 33.3 ± 1.5 17.2 ± 2.0 33.2 ± 1.4 18.2 ± 1.3 33.9 ± 1.1

Table 13. Zero-shot instance detection results for different query levels for FPN models from Sec. Sec. 5.2 trained on joint PACO dataset
and evaluated on PACO-EGO4D test-dev and test-std splits.

Figure 8. The embedding model is a mask R-CNN style model
with a custom ROI head where the softmax loss is replaced with
an ArcFace loss using instance IDs as supervision for richer repre-
sentations for instance recognition. Once training is finished, we
throw away the ArcFace layer and use the outputs from the last FC
layer as per-box representations.

ture vector fB,I using the embedding model. All the boxes
are then ranked based on the cosine similarity of their fea-
ture with the query feature fQ. The top N returned boxes
from IQ are used to compute AR@N for N = 1, 5.
Detection model. We train a standard R50-FPN mask R-
CNN model with 75 object categories on the train split
of the PACO dataset. During the feature registration and
instance detection stage, we ignore the category label and
only use the predicted boxes.
Embedding model. The embedding model is a mask R-
CNN style model with a custom ROI head as shown in
Fig. 8. During inference, it takes predicted bounding
boxes as input and outputs embeddings for each box with
ROIAlign [4]. The model is trained with ArcFace [2] loss
to have richer representations for instance recognition. We
trained the embedding model with an ArcFace loss to per-
form 16464-way instance ID classification at box-level. The
model was trained to distinguish the 16464 different object
instances in the PACO-Ego4d train split. In this dataset,
each instance has multiple bounding boxes, making it possi-
ble to train such a model. We simply use ground truth boxes
during training to avoid handling the additional complex-
ity from distinguishing foreground and background boxes.
Note that the sets of instances in train and test splits
are completely disjoint.
Implementation details. We use R50-FPN [7] as the back-

bone. The custom ROI head is implemented as a ROIAlign
operator followed by 2 FC layers with 1024 dimensions.
The ArcFace layer is configured with margin = 0.5 and
scale = 8.0. We use the default data augmentation for Faster
R-CNN [8] training in Detectron2 [9]. We train the embed-
ding model on the PACO-Ego4D train split for 22.5K
iterations. We set lr = 0.04 and use Cosine lr decay. The
batch size is 128 distributed across 32 GPUs (4 images per
GPU).

9

Figure 9. Annotation examples. Each image contains object bounding boxes (object masks omitted so attributes are visible) on the left and
part masks on the right. Object and part attributes are listed below each image.

10

Figure 10. Part segmentation and attribute prediction examples from a Vit-L model trained on PACO-LVIS and PACO-EGO4D. Each
image contains predicted object bounding boxes for the 3 highest scoring objects on the left and predicted part masks which overlap with
these objects on the right. The corresponding object and part attribute predictions are listed below each image. Attribute predictions in
green are contained in ground truth.

References
[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-

ing properties in self-supervised vision transformers. In Pro-
ceedings of the International Conference on Computer Vi-

11

sion (ICCV), 2021. 3
[2] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos

Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
4690–4699, 2019. 9

[3] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A
dataset for large vocabulary instance segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019. 5

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 9

[5] Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel
Synnaeve, Ishan Misra, and Nicolas Carion. Mdetr-
modulated detection for end-to-end multi-modal understand-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 1780–1790, 2021. 7

[6] Yanghao Li, Hanzi Mao, Ross B. Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. ArXiv, abs/2203.16527, 2022. 4

[7] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 9

[8] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 9

[9] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 9

[10] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Phillip
Krähenbühl, and Ishan Misra. Detecting twenty-thousand
classes using image-level supervision. arXiv preprint
arXiv:2201.02605, 2022. 7

12

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	. Dataset construction
	. Parts vocabulary selection
	. Attribute vocabulary selection
	. Annotation pipeline
	Instance annotation
	Managing annotation quality

	. Dataset annotation examples
	. Object statistics
	. Additional part segmentation and attribute prediction results
	. Joint training on PACO-LVIS and PACO-EGO4D
	. val to test results transfer
	. Object segmentation only models
	. Attribute prediction bounds

	. Additional zero-shot instance detection results
	. Ablation studies for zero-shot instance detection
	. From model outputs to query scores
	. Evaluation of open world detectors on zero-shot instance detection task
	. Challenge test set splits
	. Few-shot instance detection experiments

