
A. Prior work in RL Finetuning
A.1. DAPG [20]

Preliminaries. Rajeswaran et al. [20] proposed DAPG, a
method which incorporates demonstrations in RL, and thus
quite relevant to our methodology. DAPG first pretrains a
policy using behavior cloning then finetunes the policy using
an augmented RL objective (shown in Eq. (4)). DAPG pro-
poses to use different parts of demonstrations dataset during
different stages of learning for tasks involving sequence of
behaviors. To do so, they add an additional term to the policy
gradient objective:

gaug =
∑

(s,a)∈τ∼πθ

∇θ logπθ
(a|s)Aπ(s, a) +

∑
(s,a)∈τ∼T

∇θ logπθ
(a|s)w(s, a) (4)

Here τ ∼ πθ is a trajectory obtained by executing the current
policy, τ ∼ T denotes a trajectory obtained by replaying a
demonstration, and w(s, a) is a weighting function to alter-
nate between imitation and reinforcement learning. DAPG
uses a heuristic weighting scheme to set w(s, a) to decay the
auxiliary objective:

w(s, a) = λ0λ
k
1 max
(s′ ,a′)∈τ∼πθ

Aπθ (s
′
, a

′
)∀(s, a) (5)

where λ0 and λ1 are hyperparameters and k is the update
iteration counter. The decaying weighting term λk

1 is used to
avoid biasing the gradient towards the demonstrations data
towards the end of training.
Implementation Details. [20] showed results of using
DAPG on dexterous hand manipulation tasks for object re-
location, in-hand manipulation, tool use, etc. To train the
policy with behavior cloning, they use 25 demonstrations for
each task gathered using the Mujoco HAPTIX system [53].
The small size of the demonstrations dataset and the observa-
tion input allows DAPG to load the demonstrations dataset
in system memory which makes it feasible to compute the
augmented RL objective shown above.
Challenges in adopting [20]’s setup. Compared to [20], our
setup uses high-dimensional visual input (256×256 RGB
observations) and 77k OBJECTNAV demonstrations for train-
ing. Following DAPG’s training implementation, storing
the visual inputs for 77k demonstrations in system memory
would require 2TB, which is significantly higher than what is
possible on today’s systems. An alternative is to leverage on-
the-fly demonstration replay during RL training. However,
efficiently incorporating demonstration replay with experi-
ence collection online requires solving a systems research
problem. Naively switching between online experience col-
lection using the current policy and replay demonstrations

would require 2x the current experience collection time, over-
all hurting the training throughput.

A.2. Feasibility of Off-Policy RL finetuning

There are several methods for incorporating demonstrations
with off-policy RL [35–39]. Algorithm 1 shows the general
framework of off-policy RL (finetuning) methods.

Algorithm 1 General framework of off-policy RL algorithm

Require: πθ : Policy, B: replay buffer, N : Rounds, I:
Policy Update Iterations
for k = 1 to N do

Trajectory τ ← Rollout πθ(·|s) to collect trajectory
{(s1, a1, r1, h1),, (sT , aT , rT , hT)}

B ← {B} ∪ {τ}
πθ ← TrainPolicy(πθ, B) for I iterations

end for

Unfortunately, most of these methods use feedforward state
encoders, which is ill-posed for partially observable settings.
In partially observable settings, the agent requires a state
representation that combines information about the state-
action trajectory so far with information about the current
observation, which is typically achieved using a recurrent
network.
To train a recurrent policy in an off-policy setting, the full
state-action trajectories need to be stored in a replay buffer
to use for training, including the hidden state ht of the RNN.
The policy update requires a sequence input for multiple
time steps

[
(st, at, rt, ht),, (st+l, at+l, rt+l, ht+l)

]
∼

τ where l is sampled sequence length. Additionally, it is not
obvious how the hidden state should be initialized for RNN
updates when using a sampled sequence in the off-policy
setting. Prior work DRQN [54] compared two training strate-
gies to train a recurrent network from replayed experience:
1. Bootstrapped Random Updates. The episodes are sam-

pled randomly from the replay buffer and the policy updates
begin at random steps in an episode and proceed only for
the unrolled timesteps. The RNN initial state is initial-
ized to zero at the start of the update. Using randomly
sampled experience better adheres to DQN’s [55] random
sampling strategy, but, as a result, the RNN’s hidden state
must be initialized to zero at the start of each policy update.
Using zero start state allows for independent decorrelated
sampling of short sequences which is important for robust
optimization of neural networks. Although this can help
RNN to learn to recover predictions from an initial state
that mismatches with the hidden state from the collected
experience but it might limit the ability of the network to
rely on it’s recurrent state and exploit long term temporal
correlations.

2. Bootstrapped Sequential Updates. The full episode
replays are sampled randomly from the replay buffer and

the policy updates begin at the start of the episode. The
RNN hidden state is carried forward throughout the episode.
Eventhough this approach avoids the problem of finding the
correct initial state it still has computational issues due to
varying sequence length for each episode, and algorithmic
issues due to high variance of network updates due to highly
correlated nature of the states in the trajectory.

Even though using bootstrapped random updates with zero
start states performed well in Atari which is mostly fully
observable, R2D2 [40] found using this strategy prevents a
RNN from learning long-term dependencies in more mem-
ory critical environments like DMLab. [40] proposed two
strategies to train recurrent policies with randomly samples
sequences:
1. Stored State. In this strategy, the hidden state is stored

at each step in the replay and use it to initialize the network
at the time of policy updates. Using stored state partially
remedies the issues with initial recurrent state mismatch in
zero start state strategy but it suffers from ‘representational
drfit’ leading to ‘recurrent state staleness’, as the stored
state generated by a sufficiently old network could differ
significantly from a state from the current policy.

2. Burn-in. In this strategy the initial part of the replay
sequence is used to unroll the network and produce a start
state (‘burn-in period’) and update the network on the re-
maining part of the sequence.

While R2D2 [40] found a combination of these strategies to
be effective at mitigating the representational drift and recur-
rent state staleness, this increases computation and requires
careful tuning of the replay sequence length m and burn-in
period l.
Both [40, 54] demonstrate the issues associated with using
a recurrent policy in an off-policy setting and present ap-
proaches that mitigate issues to some extent. Applying these
techniques for Embodied AI tasks and off-policy RL fine-
tuning is an open research problem and requires empirical
evaluation of these strategies.

B. Prior work in Imitation Learning

In Imitation Learning (IL), we use demonstrations of suc-
cessful behavior to learn a policy that imitates the expert
(demonstrator) providing these trajectories. The simplest
approach to IL is behavior cloning (BC), which uses super-
vised learning to learn a policy to imitate the demonstrator.
However, BC suffers from poor generalization to unseen
states, since the training mimics the actions and not their
consequences. DAgger [56] mitigates this issue by itera-
tively aggregating the dataset using the expert and trained
policy ˆπi−1 to learn the policy π̂i. Specifically, at each step
i, the new dataset Di is generated by:

πi = βπexp + (1− β)π̂i−1 (6)

where, πexp is a queryable expert, and π̂i−1 is the trained
policy at iteration i−1. Then, we aggregate the dataset D ←
D ∪Di and train a new policy π̂i on the dataset D. Using
experience collected by the current policy to update the
policy for next iteration enables DAgger [56] to mitigate the
poor generalization to unseen states caused by BC. However,
using DAgger [56] in our setting is not feasible as we don’t
have a queryable human expert for policies being trained
with human demonstrations.
Alternative approaches [57–61] for imitation learning are
variants of inverse reinforcement learning (IRL), which learn
reward function from expert demonstrations in order to train
a policy. IRL methods learn a parameterizedRϕ(τ) reward
function, which models the behavior of the expert and as-
signs a scalar reward to a demonstration. Given the reward
rt, a policy πθ(at|st) is learned to map states st to distri-
bution over actions at at each time step. The goal of IRL
methods is to learn a reward function such that a policy
trained to maximize the discounted sum of the learned re-
ward matches the behavior of the demonstrator. Compared
to prior works [57–61], our setup uses a partially-observable
setting and high-dimensional visual input for training. Fol-
lowing training implementation from prior works, storing
visual inputs of demonstrations for reward model training
would require 2TB system memory, which is significantly
higher than what is possible on today’s systems. Alterna-
tively, efficiently replaying demonstrations during RL train-
ing with reward model learning in the loop requires solving
an open systems research problem. In addition, applying
these methods for tasks in a partially observable setting is an
open research problem and requires empirical evaluation of
these approaches.

C. Training Details
C.1. Behavior Cloning

We use a distributed implementation of behavior cloning
by [1] for our imitation pretraining. Each worker collects
64 frames of experience from 8 environments parallely by
replaying actions from the demonstrations dataset. We then
perform a policy update using supervised learning on 2 mini
batches. For all of our BC experiments, we train the policy
for 500M steps on 64 GPUs using Adam optimizer with a
learning rate 1.0×10−3 which is linearly decayed after each
policy update. Tab. 6 details the default hyperparameters
used in all of our training runs.

C.2. Reinforcement Learning

To train our policy using RL we use PPO with Generalized
Advantage Estimation (GAE) [62]. We use a discount factor
γ of 0.99 and set GAE parameter τ to 0.95. We do not use
normalized advantages. To parallelize training, we use DD-
PPO with 16 workers on 16 GPUs. Each worker collects 64
frames of experience from 8 environments parallely and then

Parameter Value

Number of GPUs 64
Number of environments per GPU 8
Rollout length 64
Number of mini-batches per epoch 2
Optimizer Adam

Learning rate 1.0× 10−3

Weight decay 0.0
Epsilon 1.0× 10−5

DDPIL sync fraction 0.6

Table 6. Hyperparameters used for Imitation Learning.

Parameter Value

Number of GPUs 16
Number of environments per GPU 8
Rollout length 64
PPO epochs 2
Number of mini-batches per epoch 2
Optimizer Adam

Weight decay 0.0
Epsilon 1.0× 10−5

PPO clip 0.2
Generalized advantage estimation True
γ 0.99
τ 0.95

Value loss coefficient 0.5
Max gradient norm 0.2
DDPPO sync fraction 0.6

Table 7. Hyperparameters used for RL finetuning.

performs 2 epochs of PPO update with 2 mini batches in each
epoch. For all of our experiments, we RL finetune the policy
for 300M steps. Tab. 7 details the default hyperparameters
used in all of our training runs.

C.3. RL Finetuning using VPT

To compare with RL finetuning approach proposed in VPT
[21] we implement the method in DD-PPO framework.
Specifically, we initialize the critic weights to zero, replace
the entropy term in PPO [42] with a KL-divergence loss be-
tween the frozen IL policy and RL policy, and decay the KL
divergence loss coefficient, ρ, by a fixed factor after every
iteration. This loss term is defined as:

Lkl_penalty = ρKL(πBC
θ , πθ) (7)

where πBC
θ is the frozen behavior cloned policy, πθ is the

current policy, and ρ is the loss weighting term. Following,
VPT [21] we set ρ to 0.2 at the start of training and decay it
by 0.995 after each policy update. We use learning rate of

1.5× 10−5 without a learning rate decay for our VPT [21]
finetuning experiments.

C.4. RL Finetuning Ablations

Figure 8. A policy pretrained on the OBJECTNAV task is used as
initialization for actor weights and critic weights are initialized ran-
domly for RL finetuning using DD-PPO. The policy performance
immediately starts dropping early on during training and then re-
covers leading to slightly higher performance with further training.

Method Success (↑) SPL (↑)

1) BC 52.0 20.6
2) BC→RL-FT 53.6 ±1.01 28.6 ±0.50

3) BC→RL-FT (+ Critic Learning) 56.7 ±0.93 27.7 ±0.82

4) BC→RL-FT (+ Critic Learning, Critic Decay) 59.4 ±0.42 26.9 ±0.38

5) BC→RL-FT (+ Critic Learning, Actor Warmup) 58.2 ±0.55 26.7 ±0.69

6) PIRLNav 61.9 ±0.47 27.9 ±0.56

Table 8. RL-finetuning ablations on HM3D VAL [16, 32]

For ablations presented in Sec. 4.3 of the main paper (also
shown in Tab. 8) we use a policy pretrained on 20k human
demonstrations using BC and finetuned for 300M steps us-
ing hyperparameters from Tab. 7. We try 3 learning rates
(1.5 × 10−4, 2.5 × 10−4, and 1.5 × 10−5) for both BC→
RL (row 2) and BC→ RL (+ Critic Learning) (row 3) and
we report the results with the one that works the best. For
PIRLNav we use a starting learning rate of 2.5× 10−4 and
decay it to 1.5×10−5, consistent with learning rate schedule
of our best performing agent. For ablations we do not tune
learning rate parameters of PIRLNav, we hypothesize tuning
the parameters would help improve performance.
We find BC→ RL (row 2) works best with a smaller learning
rate but the training performance drops significantly early on,
due to the critic providing poor value estimates, and recovers
later as the critic improves. See Fig. 8. In contrast when
using proposed two phase learning setup with the learning
rate schedule we do not observe a significant drop in training
performance.

