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1. Overview
This is supplementary material for the experiments in

main paper. We present detailed results for different exper-
iments from the main paper and expand on relevant topics.
We analyse the effect of sample selection using clustering ap-
proach and compare it with other baseline sample selection
methods. Then we do the annotation cost to performance
analysis, demonstrating the viability of low-cost sample se-
lection using our approach. We evaluate our proposed STeW-
Loss against other baseline loss functions in detail. Finally
we expand on all technical details (network, cluster, imple-
mentation) in depth.

2. Analysis on AVA dataset
We provide results for baseline experiment on AVA using

proposed training setup in table 1. We use YOWO [7] with
resnet-18 (R-18) and ShuffleNetV2 (SN-V2) backbone and
train on a subset of 5% random annotation and increase to
[10%, 15%] annotation sampled randomly and using pro-
posed method. Based on our results, we have three important
points to note, 1) AL requires a good base model for effective
sample selection, but AVA is a challenging dataset which
makes sample selection difficult for AL with fewer anno-
tations, 2) AVA has atomic actions, and average length is
around 1-2 seconds, which leaves no room for intra-sample
selection as only 1 keyframe is annotated per second. Videos
are long, but scene changes frequently with less temporal
coherency as average length of each atomic action is only
1.98 s with only 10% instances being above 6s length, in
contrast to UCF-101-24 and JHMDB-21. 3) AVA does not
solve dense spatio-temporal detection as only a key-frame is
annotated and all existing models predict detection on single
frame.

3. Effect of number of clusters
Our objective with cluster based sample grouping is to get

a general representation of the sample which is not strictly

Method Annot % R-18 SN-v2
Random 5% 7.13 7.18
Random 10% 8.48 8.64
Ours 10% 8.61 8.81
Random 15% 9.73 9.60
Ours 15% 9.84 9.85

Table 1. Comparison on AVA using different annotation percent.
We evaluate the performance using randomly selected annotations
and annotations selected using our CLAUS method with two differ-
ent backbones, Resnet-18 (R-18) and ShuffleNet-v2 (SN-v2). We
report the scores for f-mAP @ 0.5 mIoU.

based on the class label. This makes cluster assignment
easier than having to identify 24 clusters for 24 classes in
UCF-101-24 (21 in case of J-HMDB-21). Our experiments
in the main manuscripts are done with K = 5 cluster centers,
but we also perform the entire AL cycle using K = 10 and
K = 15 cluster centers. As shown in Figure 1, the overall
performance is more or less close to each other for all values
of K, while the performance for K = 5 is slightly better.
Allowing the clusters to focus on features not tied to the
classes and having fewer of such clusters performs better
than having large cluster centers.
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Figure 1. Comparison of model performance using different cluster
centers (K). We train our proposed CLAUS using different cluster
centers for UCF-101-24. We observe that model performance
remains similar for different cluster center numbers.
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4. Annotation selection methods
4.1. Hybrid sample selection

We evaluate the effect of sample selection for active learn-
ing using the proposed hybrid approach in table 3 and 4.
Since we don’t know the sample label beforehand, select-
ing based on uncertainty or entropy based score alone does
not warrant diverse sample selection. Since it only selects
based on the scores, it can cause selection of samples from
a particular set of classes which are harder for the model to
learn. This causes a class bias which leads the model to only
focus on those classes in further active learning steps and
prevents adding diverse samples for labeling. To prevent this,
we use the CLAUS approach, which relies on the cluster as-
signment of each sample to enforce selection from different
clusters. This takes the uncertainty based score and cluster
assignment both into account for the sample selection. The
selection process is further detailed in Algorithm 1.

We evaluate the proposed CLAUS method and com-
pare with sample selection without cluster for UCF-101-24
and J-HMDB-21 in table 3 and 4 respectively, where the
performance using CLAUS is consistently better than non-
clustering approach. The non-clustering approach uses same
uncertainty based scoring method as CLAUS and STeW-
Loss.

4.2. Active learning baseline methods

To further evaluate the effect and validity of the proposed
CLAUS method, we compare with other active learning
baseline methods for sample and frame selection based on
entropy, uncertainty and random selection. All selection
methods are trained using our proposed STeW-Loss with
same training parameters (epochs, learning rate) with the
results shown in table 5. Since other methods are not de-
signed with sample selection in consideration, they often
select samples which the model finds harder regardless of
their similarity. These methods don’t have a mechanism
to guess the similarity of different samples, which limits
the variation it can get during selection step. In contrast,
random selection could add more variation since it does a
near-uniform sampling from the given set. The proposed
CLAUS method uses cluster representation to check the
similarity of samples and can enforce the algorithm to se-
lect samples that are less similar in representation. We see
in table 5 that our CLAUS method outperforms all other
baseline methods for sample and frame selection. We also
show the comparison of per class sample selection in Figure
2 for all baselines and show how our method selects small
set of frames for annotation in Figure 3.

4.3. Error margins

We provide scores for average of 3 runs for each varia-
tion. We noticed that random and equidistant selection has

higher average error of ±1.03 and 0.84 respectively, and
AL based selection has lower error with CLAUS=±0.20,
entropy=±0.19 uncertainty=±0.35.

Selection UCF-101-24 J-HMDB-21
Strategy v-mAP f-mAP v-mAP f-mAP
Sample 36.2 42.6 53.1 56.2

Intra-sample 71.8 70.9 70.4 74.1
Hybrid (our) 72.2 72.1 71.5 72.8

Table 2. Comparison of different selection strategies. We compare
the v-mAP and f-mAP scores @ 0.5 mIoU. We report at 5% anno-
tations for UCF-101-24 and at 5.4% annotations for J-HMDB-21.

4.4. Selection strategy evaluation

We analyze the effectiveness of different selection strat-
egy included in the main paper: sample selection, intra-
sample selection and hybrid selection. As shown in table
2, sample selection performs worst as the budget is used up
to annotate entire samples. Intra-sample selection compara-
tively performs better as more diverse samples are selected
and our proposed hybrid selection strategy performs better
than both as it selects diverse frames with less budget on less
relevant samples.

5. Budget utilization
5.1. Cost-performance analysis

We gradually increase annotations based on a fixed cost
and evaluate them to find at which point is the annotation
enough to get comparable performance with fully-supervised
methods. For each active learning step s, we assume a con-
stant budget of Bs

v, B
s
f for sample and frame annotation,

which limits the total annotation cost for that step to be
Cost = Cs

v + Cs
f . For UCF-101-24 we fix that cost to 1000

per round, which is divided into selecting 5% of samples to
annotate in each round where we also annotate 5% of frames
from those samples. Similarly, we fix the cost of J-HMDB-21
to 34 per round. We demonstrate that the overall annotation
cost-performance has a linear trend for both datasets in table
6 and 7, with UCF-101-24 getting comparable results with
5% of total frames annotated with annotation cost of 16, 000
(vs 403, 282 for fully-supervised). Similarly, J-HMDB-21
has comparable results with 5.4% annotations with anno-
tation cost of 1, 226 (vs 22, 712 for fully-supervised). We
also demonstrate the cost to performance graph for our and
random sampling on UCF-101-24 in Figure 4.

5.2. Sample+frame vs only frame increment

Annotation increment in each active learning step can be
done in multiple ways, one being increasing both samples
and frames annotation together as shown in table 6 and 7.



Algorithm 1 Iterative video and frame selection algorithm
Input: videos VL,VU , frames FL,FU , budget Bv,Bf
Initialize: total cost ctotalv , ctotala = 0, Vannot ← {}, Fannot ← {}, cluster C with K centers, sample count per cluster
Cs = [0, 0, ..0]K , V score← {}

1: for all videos v in VU do
2: Uscores ← {}
3: for all frame f in v do
4: Uf = [

∑T
i=0 P (f, i)] / T // Get frame’s uncertainty over T runs using Eq. 1

5: Append Uf to Uscores

6: end for
7: for all At do
8: index = max(Uscores)
9: Usorted ← index

10: U i−W :i+w
scores = Distance(U index, i− w : i+ w) × U i−w:i+w

11: // Update nearby frame’s score based on distance to current selection, within a window w
12: end for
13: Append [vs ←

∑
Usorted] to V score // Get video score from top At frames

14: end for
15: while ctotalv ≤ Bv or ctotala ≤ Ba do
16: // Loop until cost<budget
17: v = max(V score) // Get video with highest uncertainty score
18: CV = Cluster(v) // Get video’s cluster assignment using trained model
19: if Cs[CV ] ≤ cluster limit then
20: // Check if video from saturated cluster
21: Append v to Vannot, V score[v] = 0 // Mark v for annotation and reset score
22: [ctotalv , Cs[C(V )]]+ = 1 // Update video annotation cost and cluster count
23: Select FA frames using Usorted // Select At% frames from a sorted list as above
24: Append FA to Fannot, ctotala + = 1
25: end if
26: end while
27: return (Vannot,Fannot)

=0

%Frame video-mAP@ frame-mAP@
Annot 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

With Cluster
0.25 94.91 87.98 78.34 45.00 86.59 82.03 74.92 50.11
0.50 97.24 92.12 85.00 54.34 90.84 86.87 80.71 56.59
0.75 97.65 93.63 88.25 57.68 91.61 88.70 83.12 59.49
1.00 98.12 95.85 88.91 61.84 93.62 90.91 85.80 61.63
1.25 98.25 95.95 89.97 65.55 93.42 90.94 86.44 65.61

Without Cluster
0.25 92.15 84.96 75.60 45.00 80.43 76.35 70.28 45.00
0.50 96.25 91.04 83.96 51.24 88.78 85.25 78.69 53.10
0.75 97.96 92.89 84.16 55.23 90.78 87.69 79.36 56.03
1.00 98.04 95.35 84.57 59.43 93.18 90.39 80.46 59.66
1.25 98.18 95.49 87.28 61.50 93.33 90.85 84.02 62.04

Table 3. Comparing our approach with and without clustering on UCF-101-24.



%Frame video-mAP@ frame-mAP@
Annot 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

With Cluster
0.15 92.41 84.01 63.81 4.69 67.97 61.96 54.12 27.19
0.30 99.60 96.71 88.17 41.61 97.08 94.01 85.34 45.31
0.45 99.80 96.75 91.00 52.54 97.22 94.77 88.53 54.75
0.60 99.85 96.75 91.36 56.00 97.09 94.30 89.36 60.47
0.75 99.83 96.82 91.33 57.61 97.06 94.36 89.19 60.93

Without Cluster
0.15 92.41 84.01 63.81 4.69 67.97 61.96 54.12 27.19
0.30 98.05 94.17 87.49 40.07 93.27 89.07 81.51 44.39
0.45 99.21 96.25 86.06 46.52 96.34 93.65 84.63 47.91
0.60 99.20 96.17 88.17 52.48 96.80 94.04 86.54 49.86
0.75 99.21 97.15 90.26 54.03 97.02 94.20 87.27 52.10

Table 4. Comparing our approach with and without clustering on J-HMDB-21.

CLAUS

Figure 2. Comparison of per class sample count for all baseline methods on UCF-101-24 at 1% annotation. We demonstrate the per class
samples selected using our method (CLAUS) and compare with baselines (random, equidistant, uncertainty [5], entropy [1]). We observe that
while random and equidistant has almost-uniform sample selection, they have lower performance due to redundant sample selection for
classes which are already doing good. All active learning baselines instead select samples based on utility, as a result have lower samples for
some classes and higher for some. Our method specifically has cluster based inter-sample scoring method, which creates diversity in sample
selection while selecting more from samples performing poorly.

Another option is to not select new samples, but only increase
frames for existing set of samples in the given step. This
option will increase more frames while not adding variation
via new samples in the training set. We evaluate the effect of
both variation in table 8. We increase both sample and frame
in sample+frame variation for all the steps. For only frame
variation, we increase only frames from 0.5% to 1.5% frame
annotation step. From the table, we can observe that the
sample+frame variation where we increase both samples

and frames annotation together for a given cost gives better
performance. Given our loss function which can interpolate
and handle pseudo-labels during training, the model benefits
from having more videos to increase training variation rather
than having more frames for limited videos.

6. Loss function variations
We introduce the Spatio-temporal weighted (STeW) Loss

to handle the interpolated pseudo-labels during training and



So
cc

er
Ju

gg
lin

g

Te
nn

isS
wi

ng

Go
lfS

wi
ng

Ro
pe

Cl
im

bi
ng

Sk
at

eB
oa

rd
in

g

W
al

kW
ith

Do
g

Ice
Da

nc
in

g

Di
vi

ng

Fl
oo

rG
ym

na
st

.

Ba
sk

et
ba

ll

Su
rfi

ng

Sk
iin

g

Cr
ick

et
Bo

wl
in

g

Sk
ije

t

Bi
ki

ng

Ho
rs

eR
id

in
g

Po
le

Va
ul

t

Tr
am

po
lin

eJ
.

Lo
ng

Ju
m

p

Cl
iff

Di
vi

ng

Vo
lle

yb
al

lS
pi

k.

Sa
lsa

Sp
in

Fe
nc

in
g

Ba
sk

et
ba

llD
.

50

100

150

200

250

Fr
am

e 
Co

un
t

Avg. AnnotsAvg. Frames

Figure 3. We show the per class average frame count and the per class average annotated frames using our proposed CLAUS method on
UCF-101-24 at 1% frames annotated. For each class, we show the average frames from all selected samples and compare with the average
annotated frames selected using our method. We select a minor set of frames for annotation as shown by the average annotated frames while
performing better than other baselines.
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Figure 4. Performance evaluation of our method with random
selection baseline on UCF-101-24 for various sample annotation
percent. The cost of annotation for each step is shown by the shaded
bars, with the cost value in the right axis in thousands.

adjust their impact in loss computation based on their per-
ceived correctness, shown visually in Figure 5. We assume
that pseudo-labels interpolated closer to an actual ground
truth will be more likely to be correct while the ones fur-
ther away might have some degree of correctness, which we
model using a Gaussian distribution centered at the closest
ground-truth frame. We could train without the Gaussian
weight for the pseudo-labels, which would be harsher for
wrongly-interpolated annotations, specially during initial
stage with fewer frames annotated. A basic variation is to
simply only use the available ground-truth for loss computa-
tion (Frame method) without having any interpolation. We
consider all three variations and train the model with our
active learning algorithm using different loss functions. The
result in table 10 shows that interpolation performs decently

while frame only method performs poorest. Compared to
both, the proposed STeW-Loss outperforms them and gives
best score for same cost.

6.1. Static vs Moving actions

A key concern is the ability to use pseudo-labels cor-
rectly accounting for the motion of the action. As shown in
Figure 5, different actions have different speed and camera
motion, which might make interpolation based pseudo-label
generation non-trivial and add a lot of training noise. The
proposed STeW loss gives weight per pixel for each pseudo-
label based on the overlap of foreground and background in
nearby frames. We see in Figure 5 that for extreme non-static
motion (row 3 long jump) the actor only has small area with
high weight while most actor neighboring region is almost
zero weight. We do an evaluation by separating UCF-101-24
manually into static and non-static classes based on back-
ground and camera motion (excluding ambiguous classes) in
table 9. The delta here shows that both static and non-static
benefit from STeW loss. While other methods such as using
small spatial neighborhood and camera motion based esti-
mation are also valid ways to handle motion component in
pseudo-labels, the proposed STeW provides an automated
and less computational method than motion estimation as
we only check consistency of binary action mask to get the
weights.



%Frame video-mAP@ frame-mAP@
Annot 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

CLAUS
0.25 94.91 87.98 78.34 45.00 86.59 82.03 74.92 50.11
0.50 97.24 92.12 85.00 54.34 90.84 86.87 80.71 56.59
0.75 97.65 93.63 88.25 57.68 91.61 88.70 83.12 59.49
1.00 98.12 95.85 88.91 61.84 93.62 90.91 85.80 61.63
1.25 98.25 95.95 89.97 65.55 93.42 90.94 86.44 65.61

Entropy
0.25 91.25 84.87 75.18 39.06 83.98 78.06 70.28 44.53
0.50 92.15 84.99 75.59 45.62 80.43 76.12 70.23 50.43
0.75 92.56 85.88 78.78 50.64 82.43 78.33 73.06 53.77
1.00 95.69 90.14 84.63 58.22 87.96 85.99 79.59 58.25
1.25 98.15 95.03 88.60 61.10 92.79 90.14 85.16 62.36

Uncertainty
0.25 91.65 84.69 75.37 39.00 84.25 78.36 70.26 45.12
0.50 96.82 91.48 83.24 52.81 88.96 85.11 79.32 53.74
0.75 97.68 93.58 87.55 54.61 90.87 87.12 79.65 55.84
1.00 98.01 95.37 89.55 60.27 92.88 90.17 85.50 60.29
1.25 98.14 95.58 89.62 62.11 92.97 90.55 86.21 62.18

Equidistant
0.25 91.28 83.97 75.25 38.60 84.41 78.11 69.89 44.02
0.50 97.07 90.21 80.04 44.82 92.15 86.74 77.43 48.67
0.75 97.33 93.20 82.42 49.14 92.07 87.65 81.21 52.00
1.00 97.82 94.17 84.54 53.47 92.74 88.68 82.34 55.40
1.25 97.90 94.89 88.11 62.93 93.62 89.74 84.02 63.02

Random
0.25 92.52 83.84 74.31 37.93 84.09 77.55 69.23 43.53
0.50 97.18 89.38 78.28 43.56 91.41 85.99 76.21 47.36
0.75 97.18 92.37 81.22 47.14 92.80 88.65 79.88 50.33
1.00 96.42 92.27 84.21 52.66 91.75 88.31 81.24 54.18
1.25 97.46 94.02 87.09 62.04 91.66 88.58 83.37 61.47

Table 5. Evaluating performance of different baseline selection methods for UCF-101-24. We report the performance of different cost
function to select the videos and frames for annotation in each active learning step.

7. Implementation Details

7.1. Network details

We follow the implementation by [4] with some upgrades
to perform video action detection. We use the Inception
3D network by [3] to extract features from the input video
with T frames of H ×W size. We get the features from
Mixed 4f layer from the encoder (I3D) network and pass
it to the 2D capsule layers. We use two capsule layers fol-
lowing [4] and change it to compute 2D capsules instead
of their 3D approach. This allows for reduced computation
and faster training compared to 3D capsules. Once the cap-
sules compute the features, we get the class prediction from
ClassCaps, which will have output for N classes. The pose
information from the capsule layer is used to upsample using
3D transposed convolution to get final localization output of

T frames with size H ×W . We also use skip connections
and concatenate with the upsampled features to preserve
features from the encoder head. The latent features used for
clustering loss is taken from Latent feats layer. The full
architecture detail is shown in table 11

For the UCF-101-24 and J-HMDB-21 training, we use
input clip of size 8 × 224 × 224 × 3 and get localization
output for all 8 frames at size 224× 224. We use variating
skip rate of 1 and 2 to select the frames in each clip. We use
a batch size of 8 for the training. The latent features from
Latent feats is used for computing the cluster loss.

7.2. Clustering details

We use the features from Latent feats layer from the
network as feature vector for clustering. Following [2, 8],
we initialize the cluster with K = 5 centers initially using



%Frame Cost video-mAP@ frame-mAP@
Annot 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

0.25 1000 94.91 87.98 78.34 45.00 86.59 82.03 74.92 50.11
0.50 2000 97.24 92.12 85.00 54.34 90.84 86.87 80.71 56.59
0.75 3000 97.65 93.63 88.25 57.68 91.61 88.70 83.12 59.49
1.00 4000 98.12 95.85 88.91 61.84 93.62 90.91 85.80 61.63
1.25 5000 98.25 95.95 89.97 65.55 93.42 90.94 86.44 65.61
1.50 6000 98.25 95.97 90.10 67.21 93.46 90.95 86.71 66.90
2.00 7000 98.28 95.6 90.92 68.64 93.20 90.99 87.15 68.54
2.50 8000 98.23 96.32 91.24 69.26 93.68 91.56 87.97 69.32
5.00 16000 98.33 96.35 91.25 72.28 94.28 92.28 88.38 72.12

90 362953 98.42 97.05 91.44 73.62 95.88 93.71 88.74 73.03
100 403282 99.28 97.86 91.54 75.29 98.79 96.69 89.13 74.07

Table 6. Evaluation of the proposed method on UCF-101-24. We increase the amount of samples and frames in each stage using the
proposed approach and compare with fully-supervised approach.

%Frame Cost video-mAP@ frame-mAP@
Annot 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

0.15 34 92.41 84.01 63.81 4.69 67.97 61.96 54.12 27.19
0.30 68 99.60 96.71 88.17 41.61 97.08 94.01 85.34 45.31
0.45 102 99.80 96.75 91.00 52.54 97.22 94.77 88.53 54.75
0.60 136 99.85 96.75 91.36 56.00 97.09 94.30 89.36 60.47
0.75 170 99.83 96.82 91.33 57.61 97.06 94.36 89.19 60.93
0.90 204 99.80 96.86 91.48 58.39 97.46 94.28 89.68 61.77
1.20 272 99.86 96.86 91.54 61.34 97.76 94.58 89.59 62.67
1.50 340 99.85 97.94 92.19 63.73 97.78 94.62 90.11 64.02
5.40 1226 99.87 98.35 95.24 71.50 98.26 94.98 92.33 72.85

90 20440 99.92 98.52 95.35 73.08 98.77 96.31 93.23 73.01
100 22712 99.98 99.01 96.40 75.81 99.05 97.84 93.70 74.93

Table 7. Evaluation of the proposed method on J-HMDB-21. We increase the amount of samples and frames in each stage using the
proposed approach and compare with fully-supervised approach.

the latent features from the model for the current training set.
During the training process, we use cluster loss to reduce
the distance between the latent representation with the as-
signed cluster for each sample. For each active learning step,
we use the learned cluster representation and assign cluster
for each sample from the unlabeled set VU . Based on the
cluster assignment, we pick samples from different cluster
for further labeling if the sample limit for that cluster has
not crossed the threshold. This threshold stops oversampling
from a single cluster.

7.3. Technical details

We run the training in a single Nvidia Quadro 5000 16GB
GPU with a batch size of 8, with each sample with size 8×
224×224×3 for Frames×Height×Width×Channels.
We use Adam optimizer [6] with learning rate of 0.0005 for
20 epochs in each active learning step. We also train the

random selection variant for 20 epochs in each round. We
use the weights from prior step to start the training for the
next step. The model training time is reduced as only small
fraction of annotated videos are used for training.



%Frame video-mAP@ frame-mAP@
Annot 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Sample+Frame
0.25 94.91 87.98 78.34 45.00 86.59 82.03 74.92 50.11
0.50 97.24 92.12 85.00 54.34 90.84 86.87 80.71 56.59
1.50 98.25 95.97 90.10 67.21 93.46 90.95 86.71 66.90
2.00 98.28 95.60 90.92 68.64 93.20 90.99 87.15 68.54
2.50 98.23 96.32 91.24 69.26 93.68 91.56 87.97 69.32

Only Frame
0.25 94.91 87.98 78.34 45.00 86.59 82.03 74.92 50.11
0.50 97.24 92.12 85.00 54.34 90.84 86.87 80.71 56.59
1.50 97.28 92.38 85.65 59.33 91.28 86.99 81.03 61.20
2.00 97.62 93.33 86.31 62.42 91.57 87.23 82.95 62.83
2.50 97.63 93.45 89.30 66.03 92.49 88.55 85.14 66.94

Table 8. Comparing performance between sample + frame increment vs only frame increment for UCF-101-24. The sample+frame
increment uses our method to increase V% samples in each active learning step and select F% frames from those samples for annotation.
The Only Frame increment increases only F% annotation for an existing set of samples (without selecting V% more samples) in one of the
active learning step.

Type Annot% v-mAP@0.5
Static 1% 69.2
Moving 1% 47.1
Static 5% 79.0
Moving 5% 59.9

Table 9. Evaluation of static vs moving actions on UCF-101-24.
We report v-mAP @ 0.5 mIoU at 1% and 5% for each type of
action.
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[7] Okan Köpüklü, Xiangyu Wei, and Gerhard Rigoll. You only

watch once: A unified cnn architecture for real-time spatiotem-
poral action localization. 2019. 1

[8] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong.
Towards k-means-friendly spaces: Simultaneous deep learn-
ing and clustering. In international conference on machine
learning, pages 3861–3870. PMLR, 2017. 6



%Frame video-mAP@ frame-mAP@
Annot 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5
STeW
0.25 94.91 87.98 78.34 45.00 86.59 82.03 74.92 50.11
0.50 97.24 92.12 85.00 54.34 90.84 86.87 80.71 56.59
0.75 97.65 93.63 88.25 57.68 91.61 88.70 83.12 59.49
1.00 98.12 95.85 88.91 61.84 93.62 90.91 85.80 61.63

Interpolate
0.25 92.03 95.90 77.75 43.82 84.26 79.11 72.39 48.23
0.50 97.09 92.56 84.16 51.64 92.22 88.11 80.33 53.66
0.75 97.84 94.02 85.70 53.85 92.97 90.05 81.71 54.47
1.00 98.13 94.15 86.38 58.22 93.90 90.31 82.86 58.86

Frame
0.25 91.24 82.99 73.35 37.93 82.97 77.32 69.55 43.51
0.50 94.86 86.56 78.30 43.56 86.67 81.74 74.71 47.33
0.75 95.97 88.65 80.95 47.10 87.32 82.59 75.15 50.34
1.00 96.66 90.12 83.68 52.63 89.26 84.81 78.06 54.11

Table 10. Evaluating performance of different loss functions for the video action detection network for UCF-101-24. We compare model
training for the proposed STeW-Loss with Interpolation loss and Frame level loss for various percent of frames annotated. For all loss
variations we use the same CLAUS based active learning approach to increase annotations.



Figure 5. Demonstration of our proposed STeW Loss weights for interpolated pseudo-labels. Each sample shows the weight given to each
pixel location based on the spatio-temporal consistency in pseudo-labels. The center frame is the frame with real ground-truth annotation
and the red highlight shows the weight given with full weight given to center frame. We notice that the interpolated bounding box regions
will have less consistency near the edges, so lower weight is given to those regions. Consistent foreground and background regions are given
higher weight.



Layer Name Kernel Width Stride Output
(D x H x W) (D x H x W) (D x H x W x C)

Input 8 x 224 x 224 x 3
3D Conv Conv3d 1a 7x7 7 x 7 x 7 2 x 2 x 2 4 x 112 x 112 x 64
3D Maxpool MaxPool3d 2a 3x3 1 x 3 x 3 1 x 2 x 2 4 x 56 x 56 x 64
3D Conv Conv3d 2b 1x1 1 x 1 x 1 1 x 1 x 1 4 x 56 x 56 x 64
3D Conv Conv3d 2c 3x3 3 x 3 x 3 2 x 1 x 1 2 x 56 x 56 x 192
3D Maxpool MaxPool3d 3a 3x3 1 x 3 x 3 1 x 2 x 2 2 x 28 x 28 x 192
3D Inception Mixed 3b 2 x 28 x 28 x 256
3D Inception Mixed 3c 2 x 28 x 28 x 480
3D Maxpool MaxPool3d 4a 3x3 3 x 3 x 3 2 x 1 x 1 1 x 28 x 28 x 480
3D Inception Mixed 4b 1 x 28 x 28 x 512
3D Inception Mixed 4c 1 x 28 x 28 x 512
3D Inception Mixed 4d 1 x 28 x 28 x 512
3D Inception Mixed 4e 1 x 28 x 28 x 528
3D Inception Mixed 4f 1 x 28 x 28 x 832
2D Conv Caps Primary caps 1 x 20 x 20 x 544
2D Conv Caps Conv caps 1 x 20 x 20 x 408
Latent Features Latent feats 1 x 408
Class Caps Class caps 1 x 24
Poses Reshape Poses 1 x 20 x 20 x 384
3D ConvTr ConvTr 1 9 x 9 x 9 1 x 1 x 1 1 x 28 x 28 x 64
Concat Concat 1 1 x 28 x 28 x 128
3D ConvTr ConvTr 2 3 x 3 x 3 2 x 2 x 2 2 x 56 x 56 x 64
Concat Concat 2 2 x 56 x 56 x 128
3D ConvTr ConvTr 3 3 x 3 x 3 2 x 2 x 2 4 x 112 x 112 x 64
Concat Concat 3 4 x 112 x 112 x 128
3D ConvTr ConvTr 4 3 x 3 x 3 2 x 2 x 2 8 x 224 x 224 x 128
3D Conv Conv3d out 3 x 3 x 3 1 x 1 x 1 8 x 224 x 224 x 1

Table 11. Network architecture details. We use an I3D head for encoding the video information, followed by 2D capsules that will predict
the class (24 for UCF-101-24) as class capsules. The pose information is then passed through a decoder with 3D transposed convolution for
upsampling and concatenation with prior layers for skip connection. Each 3D Inception module follows the standard procedure from [3] and
each Capsule layer follows [4].
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