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A. Notations and Code
We summarize the notations used throughout the paper

in Table A.1. We provide PyTorch-style pseudo code for
NoisyTwins in noisy twins.py in the supplementary
material. We will open-source our code to promote repro-
ducible research.
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Figure A.1. Qualitative Results and iFID. We observe that the
noise-only baseline suffers from the mode collapse and class con-
fusion for tail categories as shown on (left). Despite this, it is
found that the mean iFID based on Inception V3 shows a smaller
value for StyleGAN2ADA+Noise, whereas a higher value for di-
verse and class-consistent NoisyTwins. Hence, this metric does
not align with qualitative results. On the other hand, the proposed
mean iFIDCLIP is lower for NoisyTwins, demonstrating its relia-
bility for evaluating GAN models.

*Equal Contribution. Link: rangwani-harsh.github.io/NoisyTwins

Table A.1. Notation Table

Symbol Space Meaning

c Rd Class Embedding
z Rd Noise vector
w Rd Vector in W latent Space
D Discriminator
G Generator
BS R+ Batch Size
xi R3×H×W Image
c̃ Rd Noise Augmented Class Embedding
nc R+ Frequency of training samples in class c
σc R+ Effective number of samples based noise

standard deviation
σ R+ Hyperparameter for scaling noise
µc Rd Mean embedding parameters of class c
W̃A W̃B RBS×d Batches of augmented latents
Cj,k R Cross-correlation between jth and kth

latent variables
λ R+ Strength of NoisyTwins regularization
γ R+ Relative importance of the two terms of

NoisyTwins loss
ρ R+ Imbalance ratio of dataset: Ratio be-

tween the most and the least frequent
classes

B. Comparison of iFID and iFIDCLIP

In this section, we present failure cases of InceptionV3-
based iFID in the detection of mode collapse, and show
how CLIP-based iFID can detect these cases. InceptionV3-
based iFID assigns a lower value to a generator with mode
collapse, compared to another generator which creates di-
verse and class-consistent images. In addition to the exam-
ple given in the main text (Fig. 5), we provide examples
from three different classes (Fig. B.2). In all the four cases,
the InceptionV3-based iFID is better for mode collapsed
classes. Whereas iFIDCLIP follows the correct behavior,
where the class consistent and diverse model is ranked bet-
ter. Due to this inconsistent behavior, mean iFID (mean
across classes) which is a commonly used as a metric for
quantifying class confusion [1] can be incorrect.
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Figure B.2. iFID Comparison on iNaturalist 2019 dataset. We provide examples of classes where the quality of images generated by
StyleGAN2-ADA is worse, which either suffers from mode collapse or artifacts in generation. Yet iFID based on Inception V3 ranks it
higher in terms of quality, which doesn’t align with human judgement. On the other hand the proposed iFIDCLIP is able to rank the models
correctly and gives a lower value to diverse generations from NoisyTwins.

For example, we observe that the StyleGAN2-ADA
baseline with proposed noise augmentation achieves mean
iFID (243.88) on ImageNet-LT, compared to 257.29 for
the NoisyTwins model (Table 1 in main text). However,
while examining the tail class samples (Fig. A.1), we
find that noise augmented baseline suffers from mode col-
lapse and class confusion, whereas NoisyTwins generates
diverse and class-consistent images. Hence, the mean
iFID based on Inception-V3 does not align well with qual-
itative results. On the contrary, the iFIDCLIP value is
41.20 for the noise-augmented model compared to 39.37
for NoisyTwins, which correlates with the human observa-
tion that the NoisyTwins model should have a lower FID as
it is diverse and class-consistent. Hence, the proposed met-
ric iFIDCLIP can be used to to evaluate models for class-
conditional image generation reliably.

C. Experimental Details

We run our experiments using PyTorchStudioGAN [2] as
the base framework. For most baseline experiments, we use
the standard StyleGAN configurations present in the frame-
work. We use a learning rate of 0.0025 for the discrimi-
nator (D) and the generator (G) network. We use a batch
size of 128 for all our experiments. In addition, following
the observations of previous work [6], we apply a delayed
Path Length Regularization (PLR) starting at 60k iterations
for all our experiments on ImageNet-LT. For NoisyTwins,
the most important hyperparameters are λ (regularization
strength) and σ (noise variance). We perform a grid search
on λ values of {0, 0.001, 0.01, 0.1} and σ values of {0.10,
0.25, 0.50, 0.75}. We provide a detailed list of optimal hy-
perparameters used in Table C.2. All the models trained on
a particular dataset use the same hyperparameters, to main-
tain fairness in the comparison of models. We summarize
all the hyperparameters used for respective datasets in Ta-
ble C.2.

For our experiments on few-shot datasets with SotA

Effect of  Barlow Regularization Strength 
on FID

FID FIDCLIP

Figure C.3. Ablation on γ: Quantitative comparison
on CIFAR10-LT for the strength of hyperparameter (γ) in
NoisyTwins loss function.

transitional-cGAN, we use the author’s official code imple-
mentation available on GitHub 1. We use the same config-
uration specified to first evaluate on ImageNet Carnivores
and AnimalFaces datasets. To integrate NoisyTwins, we
generate the noise augmentations by augmenting the class
embeddings and then apply NoisyTwins regularization in
W space. We use the same hyperparameter setting used by
the authors and NoisyTwins with λ = 0.001 and γ = 0.05.

C.1. Statistical Significance of the Experiments

We report mean and standard deviation over three evalu-
ation runs for all baselines on the CIFAR10-LT (Table C.3).

1https://github.com/mshahbazi72/transitional-cGAN



Table C.2. HyperParameter Configurations used for experiments. We provide a detailed list of hyperparameters used for the experi-
ments across datasets for NoisyTwins on StyleGANs.

Long-Tail Datasets Few-Shot Datasets

iNaturalist-2019 ImageNet-LT CIFAR10-LT (ρ=100) ImageNet Carnivores AnimalFaces

Resolution 64 64 32 64 64
Augmentation ADA ADA DiffAug ADA ADA

Regularizers

Effective Samples α 0 0 0.99 0 0
Noise Scaling σ 0.1 0.25 0.75 0.5 0.5

NoisyTwins Start Iter. 25k 60k 0 0 0
NoisyTwins Weights (λ, γ) 0.001, 0.005 0.001, 0.005 0.01, 0.05 0.001, 0.05 0.001, 0.05

LeCam Reg Weight 0.01 0 0 0 0
R1 Regularization γR1 0.2048 0.2048 0.01 0.01 0.01

PLR Start Iter. 0 60k No PLR 0 0

StyleGAN

Mapping Net Layers 2 8 8 2 2
D Backbone ResNet ResNet Orig ResNet ResNet
Style Mixing 0.9 0.9 0 0 0

G EMA Rampup None None 0.05 0.05 0.05
G EMA Kimg 20 20 500 500 500

MiniBatch Group 8 8 32 32 32

Table C.3. Statistical Analysis for CIFAR10-LT. This table provides the mean and one standard deviation of metrics for all methods on
CIFAR10-LT performed on three independent evaluation runs by generating 50k samples across random seeds.

CIFAR10-LT (ρ=100)
Method FID(↓) FIDCLIP(↓) iFIDCLIP(↓) Precision(↑) Recall(↑)

SG2+DiffAug [3] 31.72±0.16 6.24±0.02 11.63±0.03 0.63±0.00 0.35±0.00

SG2+D2D-CE [1] 20.08±0.15 4.75±0.04 11.35±0.01 0.73±0.00 0.43±0.00

gSR [5] 22.50±0.29 5.55±0.01 9.94±0.00 0.70±0.00 0.28±0.01

SG2+DiffAug+Noise (Ours) 28.85±0.18 5.29±0.02 10.64±0.01 0.71±0.00 0.38±0.00

+ NoisyTwins (Ours) 17.72±0.08 3.56±0.01 7.27±0.02 0.69±0.01 0.52 ±0.01

It can be observed that most metrics that we have reported
have a low standard deviation, and metrics are close to the
mean value across runs. As we find standard deviation to be
low across the metrics evaluated and the process of evaluat-
ing iFID to be expensive, we do not explicitly report them
on large multi-class datasets.

D. Additional Details of Analysis

We perform our ablation experiments on CIFAR10-LT
using the same configuration as mentioned in Table C.2.
We provide ablation experiments on the standard deviation
of noise (σ) and the strength of regularization loss (λ) (Sec.
6), as we observe that they influence the performance of the
system most. We further provide ablation on the parame-
ter γ in Fig. C.3, which controls the relative importance

Figure C.4. Comparison of FID curves for CIFAR10-LT
(ρ=100). NoisyTwins leads to stable training with decreasing FID
with iterations.



Table C.4. Evaluation of NoisyTwins by varying degree of imbalance. NoisyTwins can produce diverse and class-consistent results
across imbalance ratios.

CIFAR10-LT
Method ρ FID(↓) FIDCLIP(↓) iFIDCLIP(↓) Precision(↑) Recall(↑)

SG2+DiffAug [3] 50 26.79 5.83 9.61 0.65 0.38
+NoisyTwins (Ours) 14.92 2.99 6.38 0.71 0.57

SG2+DiffAug [3] 100 31.73 6.27 11.59 0.63 0.35
+NoisyTwins (Ours) 17.74 3.55 7.24 0.70 0.51

SG2+DiffAug [3] 200 55.48 10.59 19.49 0.65 0.36
+NoisyTwins (Ours) 23.57 4.91 9.17 0.68 0.46

StyleGAN2+DiffAug NoisyTwins (Ours)

Figure E.5. Class-wise iFIDCLIP comparison of models on
CIFAR10-LT (ρ=100) dataset.

between the invariance enforcement and decorrelation en-
hancement terms in Eq. 6 of the main text. We find that
performance remains almost the same while varying γ from
0.005 to 0.1, with optimal value occurring around 0.05 for
CIFAR10-LT. Hence, the model is robust to γ.

We further analyze our method for a range of imbal-
ance ratios (i.e., ρ, ratio of the most frequent to least fre-
quent class) in the class distribution. We present results
for CIFAR10-LT with imbalance factors (ρ) values of 50,
100, and 200 in Table C.4. Our method can prevent mode
collapse and improves the baseline FID significantly in all
cases. Also note that the baseline gets more unstable (high
FID) as the imbalance ratio increases, which shows the ne-
cessity of using NoisyTwins as it stabilizes the training even
when large imbalances are present in the dataset (Fig. C.4).

E. Additional Results

Fig. E.5 provides the class-wise comparison of the
proposed iFIDCLIP for the baseline and after adding
NoisyTwins. NoisyTwins produces better iFIDCLIP for all
classes, hence does not lead to performance degradation for
head classes while improving performance on tail classes.

We now provide additional qualitative results for mod-
els. Similar to ImageNet-LT, we also provide a full-scale
comparison of images from different methods in Fig. E.10
for iNaturalist-2019. In addition to the images from the
tail classes, we also show generations from the head and
middle classes. In Fig. E.10, it is clearly shown that
NoisyTwins can obtain high-quality and diverse samples
compared to the baseline. We find that the StyleGAN2-
ADA baseline produces similar images across a class for tail
classes, which confirms the occurrence of class-wise mode
collapse even in large datasets. Further, it can be seen that
the regularizer-based method (gSR) is unable to capture the
identity of the real class and suffers from the issue of class
confusion (as also seen in t-SNE of Fig. 2 of the main text).
Our method NoisyTwins, can produce realistic-looking di-
verse images even for tail classes, which shows the suc-
cessful transfer of knowledge from head classes. Train-
ing a class-conditioned GAN on long-tailed datasets leads
to class confusion when the extent of knowledge transfer
is not controlled. NoisyTwins strikes the right balance be-
tween knowledge transfer from the head classes to benefit
the quality of generation in the tail classes, thus not allow-
ing class confusion. This would not be possible if we train
GAN independently on tail classes (∼ 30 images), which
shows the practical usefulness of joint training on complete
long-tailed data (i.e., our setup).

We showcase qualitative results of generations from few-
shot datasets (i.e., ImageNet Carnivore and AnimalFaces).
Fig. E.6 and E.7 show the results of the SotA few-shot
baseline of Transitional-cGAN (left) and after augmenting
it with our proposed NoisyTwins (right). Our proposed
method, NoisyTwins, can further stabilize the training of
Transitional-cGAN and improve the quality and diversity
of the generated samples on both datasets of ImageNet Car-
nivores and AnimalFaces.



Transitional cGAN (FID: 14.60) Transitional cGAN + NoisyTwins (FID: 13.65)

Figure E.6. Qualitative comparison on few-shot ImageNet Carnivores dataset.

Transitional cGAN (FID: 20.53) Transitional cGAN + NoisyTwins (FID: 16.15)

Figure E.7. Qualitative comparison on few-shot AnimalFaces dataset.

Results across other Resolutions: NoisyTwins scales well
on larger resolutions as demonstrated on few-shot Ani-

malFaces (AF) dataset using Transitional-cGAN [7] in Ta-
ble E.5, where we observe a significant improvement if FID



Table E.5. Results for Large Resolutions on Animal Faces dataset

FID (↓) AF (128 × 128) AF (256 × 256)
Transitional-cGAN [7] 22.59 22.28
+NoisyTwins (Ours) 16.79 19.14

Table E.6. Results for large iNaturalist 2019 dataset (128 × 128)

FID (80k) (↓) FID (↓) FIDCLIP (↓)
StyleGAN2-ADA [3] 16.58 12.31 2.18
+NoisyTwins (Ours) 15.29 12.01 1.93

Figure E.8. BigGAN-AM results on iNaturalist Dataset.

for both 128 × 128 and 64 × 64 resolution data. Further,
on large-scale iNat-19 StyleGAN2-ADA baseline in Tab.
E.6, we also find that NoisyTwins is able to improve per-
formance. The NoisyTwins method also converges faster as
at intermediate stage of 80k iterations in full run of 150k it-
erations, the FID for NoisyTwins is lower than baseline. As
NoisyTwins method is based on the information maximiza-
tion principle [8] and generalizes on datasets, we expect it
benefits other large resolutions of StyleGAN too, similar to
what is observed in Sauer et al. [6].
Comparison to Fine-Tuning Approaches: We tested
NoisyTwins in fine-tuning setting to investigate if it is
able to overcome mode collapse. For this we first train
StyleGAN-2 DiffAug baseline (Table 2) and then obtain the
checkpoint which has collapse, we then resume training of
baseline after adding the NoisyTwins regularizer. As seen
in Fig. E.9, NoisyTwins is able to reconstruct the collapsed
class of baseline on fine-tuning, improving the FID to 19.46
from 31.73 on the CIFAR10-LT dataset.

We also compare our method to other fine-tuning ap-
proaches like BigGAN-AM [4], which tries to adapt the em-
beddings for new classes or repair collapsed classes using
knowledge transfer from a pre-trained classifier trained on
the target dataset. However, we see in Fig. E.8, when fine-
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Figure E.9. Fine-tuning Results. (Top) FID Curve during fine-
tuning with NoisyTwins for CIFAR10-LT dataset. (Below) Di-
verse images of the truck class generated after fine-tuning baseline
with NoisyTwins.

tuned for fine-grained datasets like iNaturalist, these ap-
proaches fail completely due to the significant domain shift
of these datasets compared to ImageNet. We hypothesize
that this is because the activation maximization(AM) [4] us-
ing a classifier trained on iNaturalist is unable to produce
meaningful images as there is presence of distribution shift
between the datasets.
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Figure E.10. Qualitative Analysis on iNaturalist2019 (1010 classes). Examples of generations from various classes for evaluated
baselines (Table 1). The baseline ADA suffers from mode collapse, whereas gSR suffers from class confusion particularly for tail classes,
particularly for tail classes as seen above on the left. NoisyTwins generates diverse and class-consistent images across all categories.
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