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The proposed graph prototype contrastive learning
(GPC) can be formulated as Expectation-Maximization
(EM) solutions. In this appendix, we first provide a the-
oretical EM modeling for GPC to prove its validity and
convergence, and then systematically present the relations
and differences between the proposed approach and exist-
ing contrastive learning paradigms.

Preliminaries. For clarity and convenience, we adopt
a more general notation here, which is different from that
used in the paper. Suppose that a training set S = {si}Ni=1

contains N skeleton sequences, where si ∈ RF×K , K =
J×3, J is the number of body joints with 3D positions, and
F is the sequence length (i.e., number of consecutive skele-
tons). We first represent each sequence with skeleton graphs
by: G(si) = xi = (G1, · · · ,GF ), where G(·) is the pre-
defined graph construction function, xi = (G1, · · · ,GF )
is the consecutive graphs representing the ith skeleton se-
quence si, and Gt denotes the tth graph corresponding to
the tth skeleton in si. In our work, instead of using origi-
nal skeleton sequences, we utilize their skeleton graph rep-
resentations as inputs to capture richer skeletal body and
motion features. The objective of skeleton graph represen-
tation learning is to learn a graph embedding/encoder func-
tion fθ (realized via θ-parameterized neural networks) that
maps the skeleton graphs xi to vi ∈ RH , by vi = fθ (xi),
such that vi can effectively represent latent features of xi to
perform person re-identification.

Formally, the goal is to find the network parameter θ
that maximizes the log-likelihood function of the observed
graph representations {xi}Ni=1 of N skeleton sequences as
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follows:

θ∗ = argmax
θ

L(x1, · · · ,xN ; θ)

= argmax
θ

N∏
i=1

p (xi; θ)

⇐⇒ argmax
θ

N∑
i=1

log p (xi; θ) , (1)

where L(x1, · · · ,xN ; θ) denotes the likelihood function of
the observed skeleton graph representations with regard to
θ, and each skeleton graph representation1 xi is hypotheti-
cally related to a certain skeleton graph prototype cj ∈ RH ,
with cj ∈ {cj}Kj=1 and K is the number of graph proto-
types. Under this assumption, we can re-formulate the ob-
jective in Eq. (1) as:

θ∗ =argmax
θ

N∑
i=1

log p (xi; θ)

=argmax
θ

N∑
i=1

log

K∑
j=1

p (xi, cj ; θ) , (2)

Directly optimizing this function is intractable, thus we con-
sider a lower-bound by using a surrogate function as:

N∑
i=1

log

K∑
j=1

p (xi, cj ; θ)

=

N∑
i=1

log

K∑
j=1

Q (cj)
p (xi, cj ; θ)

Q (cj)

≥
N∑
i=1

K∑
j=1

Q (cj) log
p (xi, cj ; θ)

Q (cj)
, (3)

1For simplicity of presentation, we use the “skeleton graph representa-
tion” to denote the graph representation of a skeleton sequence.
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where Q (cj) represents some distribution over {cj}Kj=1

and
∑K

j=1 Q (cj) = 1. We apply Jensen’s inequality to
derive the last step of Eq. (3), where the equality can be
achieved under the condition that p(xi,cj ;θ)

Q(cj)
is a constant.

To realize this equality, we have:

Q (cj) =
p (xi, cj ; θ)∑K

m=1 p (xi, cm; θ)
=

p (xi, cj ; θ)

p (xi; θ)

= p (cj ;xi, θ) , (4)

where Q (cj) is a posterior probability related to cj ,xi, and
θ. Different from [1, 2] that employ clustering to estimate
prototypes and representation distributions under the fixed
θ, we exploit the graph feature centroid of each ground-
truth identity as a different graph prototype. In particu-
lar, when given the θ-parameterized encoder to encode all
skeleton graphs (xi) at the Expectation step, their corre-
sponding graph prototypes (cj) are assumed to follow the
distribution of ground-truth classes in the dataset. The
graph prototype distribution is hence constant and can be
computed by Q (cj) = p (cj ;xi, θ). We can re-write Eq.
(3) as:

N∑
i=1

K∑
j=1

(Q (cj) log p (xi, cj ; θ)−Q (cj) logQ (cj)) ,

(5)

where the constant −
∑N

i=1

∑K
j=1 Q (cj) logQ (cj) can be

ignored and we need to maximize:

N∑
i=1

K∑
j=1

Q (cj) log p (xi, cj ; θ) . (6)

For the Expectation (E)-step, p (cj ;xi, θ) (see Eq. (4))
is estimated by the ground-truth class distribution. In our
approach, the number of graph prototypes (K) is identi-
cal to the number of different classes, and we generate
skeleton graph prototypes {cj}Kj=1 by computing the fea-
ture centroids of encoded skeleton graph representations
vi in different classes. We use {Cj}Kj=1 to denote the
groups2 of graph representations (referred to as “sample
groups”) belonging to different prototypes. Then, we com-
pute p (cj ;xi, θ) = 1 (xi ∈ Cj), where 1 (xi ∈ Cj) = 1
if xi belongs to the jth sample group Cj (i.e., correspond-
ing to graph prototype cj); otherwise 1 (xi ∈ Cj) = 0.

Assumption 1 Prototype-Class Consistency. The global
distribution of graph prototypes is consistent with the distri-
bution of class feature centroids, i.e., all samples belonging

2The graph prototypes {cj}Kj=1 for {xi}Ni=1 are generated based on

their encoded features {vi}Ni=1, while {Cj}Kj=1 are groups of {xi}Ni=1

belonging to different graph prototypes.

to a ground-truth class explicitly correspond to the sample
group of a certain prototype. In the E-step, we adopt this as-
sumption to generate skeleton graph prototypes and derive
p (cj ;xi, θ) = 1 (xi ∈ Cj).

In the Maximization (M)-step, we combine Eq. (4) to
maximize the lower-bound in Eq. (6) after the E-step:

N∑
i=1

K∑
j=1

Q (cj) log p (xi, cj ; θ)

=

N∑
i=1

K∑
j=1

p (cj ;xi, θ) log p (xi, cj ; θ)

=

N∑
i=1

K∑
j=1

1 (xi ∈ Cj) log p (xi, cj ; θ) . (7)

Assumed that each class is equally important and the
sample number of each class is approximately identical in
learning, each graph prototype cj can have a uniform prior
probability p (cj ; θ) =

1
K . We have:

p (xi, cj ; θ) = p (xi; cj , θ) p (cj ; θ)

=
1

K
· p (xi; cj , θ) , (8)

where the distribution of samples around each graph proto-
type is assumed to be an isotropic Gaussian, leading to:

p (xi; cj , θ) =
exp

(
−(vi−cp)

2

2σ2
p

)
∑K

j=1 exp
(

−(vi−cj)
2

2σ2
j

) , (9)

where vi = fθ (xi) and cp is the graph prototype for the
sample group Cp containing xi, i.e., xi ∈ Cp. We apply
ℓ2-normalization to both v and c to have (v − c)2 = 2 −
2v · c. Then combining this with Eq. (2), (3), (6), (7), (8),
and (9), we can get the maximum log-likelihood estimation
with:

θ∗ = argmin
θ

N∑
i=1

− log
exp (vi · cp/τp)∑K
j=1 exp (vi · cj/τj)

⇐⇒

θ∗ = argmin
θ

K∑
k=1

Nk∑
i=1

− log
exp

(
vk
i · ck/τk

)∑K
j=1 exp

(
vk
i · cj/τj

) ,
(10)

where vk
i denotes the encoded features of ith sample (i.e.,

skeleton graph representation) belonging to the kth graph
prototype ck, Nk is the number of samples in the kth sample
group, and τ is related to the distribution of encoded graph
representations around different graph prototypes.

Assumption 2 Maximum Homogeneous Similarity. The
homogeneous samples, which are defined as samples within



the same-prototype sample group, should share higher in-
herent similarity than heterogeneous samples between dif-
ferent groups. In other words, the graph prototype of each
sample group can represent the unique skeleton concepts
and attributes of a certain identity, and the same group’s
samples possess the homogeneity of features correspond-
ing to this prototype [3]. According to Assumption 1, it
can be equivalent to the objective that the representation
of each sample should be maximally similar to the corre-
sponding prototype and be minimally similar to other pro-
totypes. In the M-step, we maximize the probability that
each sample representation belongs to its unique prototype
(see Eq. (9)) based on this assumption. The equivalent for-
mulation of this objective in Eq. (10) after applying feature
ℓ2-normalization can be further interpreted as to maximize
the dot-product based similarity between samples and their
prototypes while maximizing the dissimilarity to other pro-
totypes.

Relations to Existing Contrastive Losses [1, 2, 4–7]:

1. The InfoNCE loss [4] re-formulated in MoCo [5] and
SimCLR [6] can be interpreted as special cases of the
maximum log-likelihood estimation in Eq. (10), where
the prototype cp for a feature vi is replaced by the aug-
mented feature v′

i generated from different views of
augmentation of the same instance (i.e., cp = v′

i) and
τ is fixed as a temperature for contrastive learning.

2. The masked prototype contrastive (MPC) loss in [1]
and skeleton prototype contrastive (SPC) loss in [2]
can be viewed as unsupervised generalized versions of
the objective in Eq. (10). Both of them leverage unsu-
pervised clustering algorithms (e.g., DBSCAN [8]) to
generate class-agnostic prototypes cp. The SPC loss
exploits the multi-scale graph features of a skeleton
sequence as vi, while the MPC loss replaces it with
the features of random skeleton subsequences of a se-
quence. However, the instability (e.g., varying clus-
ter numbers caused by over-clustering) or/and unreli-
ability of the used identity-agnostic prototypes (e.g.,
lower confidence to characterize a ground-truth iden-
tity) largely limit their practical performance.

3. The ProtoNCE loss used in PCL [7] is a combination
of momentum-based contrastive (MoCo) learning [5]
and unsupervised prototype estimation with k-means
clustering. It has a similar form as Eq. (10), where
τ is estimated with the assumption that the distribution
of feature representations around each prototype varies
in different clusters. However, PCL estimates the fea-
ture distribution under the Euclidean distance metric
used in the k-means clustering. Such estimation could
be inapplicable (e.g., can not be generalized) to mod-
els that employ different clustering algorithms (e.g.,

density-based DBSCAN [8]) or/and different distance
metrics (e.g., Jaccard metric), thus failing to getting
satisfactory performance in practice [1].

Temperatures. In our work, we adopt a generic form
following the common practice [5,6,9], i.e., setting a global
temperature τ for the proposed approach. By assuming a
uniform feature distribution around each instance (i.e., τ =
τk = τj), we encourage the model to learn representa-
tions with higher global uniformity, which could improve
the quality of contrastive representation learning as theoret-
ically and empirically proved in [1, 10, 11].

In the proposed approach, each ground-truth identity is
represented with a unique graph prototype, which is gener-
ated by computing the class centroid of encoded graph rep-
resentations. We combine both sequence-level and skeleton-
level graph representations to perform the graph prototype
contrastive (GPC) learning, so as to learn more identity-
associated graph semantics from different levels. The pro-
posed sequence-level (Lseq

GPC) and skeleton-level GPC loss
(Lske

GPC) can be formulated based on Eq. (10) as:

Lseq
GPC =

K∑
k=1

Nk∑
i=1

− log
exp

(
vk
i · ck/τ1

)∑K
j=1 exp

(
vk
i · cj/τ1

) , (11)

Lske
GPC =

K∑
k=1

Nk∑
i=1

F∑
t=1

− log
exp

(
v̂k
i,t · ĉk/τ2

)
∑K

j=1 exp
(
v̂k
i,t · ĉj/τ2

) ,
(12)

where cj , ĉj denotes the jth graph prototype and its lin-
ear projection, i.e., ĉj = F(cj), vk

i (equivalent to Sk,j

in the paper) denotes the graph representation of the ith

skeleton sequence belonging to the kth class, v̂k
i,t (equiv-

alent to F1(s
t
k,j) in the paper) represents the linear projec-

tion of graph representation of the tth skeleton in the ith se-
quence belonging to the kth identity, τ1 and τ2 represent the
global temperatures for sequence-level and skeleton-level
contrastive learning, and F1(·), F(·) are linear projection
heads to transform skeleton-level graph representations and
graph prototypes into the same contrastive space Rd. It is
worth noting that the graph prototypes are generated from
higher level (i.e., sequence-level) representations and the
learnable linear projection in Eq. (11) can be viewed as
integrating related graph features from both levels for con-
trastive learning. Overall, the proposed GPC loss can be
viewed as a generalization of existing skeleton prototype
contrastive losses [1, 2] with: (1) Full skeletal relation en-
coding, which exploits Skeleton Graph Transformer (SGT)
to simultaneously captures structural and actional relations
from both adjacent and non-adjacent body joints (see Sec.
3.2 of the paper); (2) Fine-grained skeleton semantics learn-
ing, which combines graph prototype contrastive learning



(sequence and skeleton level semantics, see Sec. 3.3 of the
paper) and graph structure-trajectory prompted reconstruc-
tion (graph and node level semantics, see Sec. 3.4 of the
paper).

Convergence Proof

We prove the convergence of GPC under modeling the
maximum log-likelihood estimation (see Eq. (10)). Recall
Eq. (2) and (3) and let

ℓ(θ) =

N∑
i=1

log p (xi; θ)

=

N∑
i=1

log

K∑
j=1

p (xi, cj ; θ)

=

N∑
i=1

log

K∑
j=1

Q (cj)
p (xi, cj ; θ)

Q (cj)

≥
N∑
i=1

K∑
j=1

Q (cj) log
p (xi, cj ; θ)

Q (cj)
. (13)

The above inequality holds with equality when Q (cj) =
p (cj ;xi, θ) is a constant (see Eq. (4)).

In the tth E-step, we have estimated the constant value
Q(t) (cj) = p

(
cj ;xi, θ

(t)
)

based on the ground-truth class
distribution. Then we have:

ℓ
(
θ(t)

)
=

N∑
i=1

K∑
j=1

Q(t) (cj) log
p
(
xi, cj ; θ

(t)
)

Q(t) (cj)
. (14)

For the tth M-step, we fix Q(t) (cj) = p
(
cj ;xi, θ

(t)
)

and train model parameters θ to maximize Eq. (14). In this
way, we can always have:

ℓ
(
θ(t+1)

)
≥

N∑
i=1

K∑
j=1

Q(t) (cj) log
p
(
xi, cj ; θ

(t+1)
)

Q(t) (cj)

≥
N∑
i=1

K∑
j=1

Q(t) (cj) log
p
(
xi, cj ; θ

(t)
)

Q(t) (cj)

= ℓ
(
θ(t)

)
. (15)

The above result that ℓ
(
θ(t)

)
monotonically increases with

more iterations suggests the convergence of the algorithm.
The detailed convergence properties of the EM algorithm

are discussed in [12, 13]. Here we only discuss the general
case, and follow [13] to make the assumptions for the EM
algorithm:

• (a) Ω is a subset in the r-dimensional Euclidean space
Rr.

• (b) Ωθ(0) =
{
θ ∈ Ω : ℓ(θ) ≥ ℓ

(
θ(0)

)}
is compact for

any ℓ
(
θ(0)

)
> −∞.

• (c) ℓ(·) is continuous in Ω and differentiable in the in-
terior of Ω.

Under the assumptions of (a), (b), and (c)3, we have:
(d)

{
ℓ
(
θ(t)

)}
t≥0

is bounded above for any θ(0) ∈ Ω.
As a consequence of (d) and the inequality (15) (i.e.,
ℓ
(
θ(t+1)

)
≥ ℓ

(
θ(t)

)
), ℓ

(
θ(t)

)
converges monotonically to

some ℓ∗.
It is worth noting that there is no guarantee that ℓ∗ is

the global maximum of ℓ(·) over Ω. As reported in previ-
ous works [13–17], if the log-likelihood function ℓ(·) has
several (local or global) maxima and stationary points, the
convergence of the EM sequence

{
ℓ
(
θ(t)

)}
to either type

of point depends on the choice of starting point. Readers
can refer to [12,13] for more details about different conver-
gence cases of the EM algorithm.

The aforementioned fact may account for the perfor-
mance changes (i.e., small variations) of our model on the
same dataset, as different random initializations of model
parameters could change θ(0) (i.e., the starting point) hence
the final convergence result. In practice, we follow [1,18] to
train the model with different random initializations on each
dataset and report its average performance, which helps es-
timate a more stable EM convergence result with different
initialized starting points.

References
[1] H. Rao and C. Miao, “SimMC: Simple masked contrastive

learning of skeleton representations for unsupervised person
re-identification,” in International Joint Conference on Arti-
ficial Intelligence (IJCAI), pp. 1290–1297, 2022. 2, 3, 4

[2] H. Rao and C. Miao, “Skeleton prototype contrastive
learning with multi-level graph relation modeling for
unsupervised person re-identification,” arXiv preprint
arXiv:2208.11814, 2022. 2, 3

[3] M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters,
Y. Schmitt, J. Schlötterer, M. van Keulen, and C. Seifert,
“From anecdotal evidence to quantitative evaluation meth-
ods: A systematic review on evaluating explainable AI,”
arXiv preprint arXiv:2201.08164, 2022. 3

[4] A. van den Oord, Y. Li, and O. Vinyals, “Representation
learning with contrastive predictive coding,” arXiv preprint
arXiv:1807.03748, 2018. 3

[5] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum
contrast for unsupervised visual representation learning,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9729–9738, 2020. 3

3These assumptions can be satisfied in most practical situations. As the
related proofs/discussions are out of the scope of this work, readers can
refer to [13] for more details.



[6] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A sim-
ple framework for contrastive learning of visual represen-
tations,” in International Conference on Machine Learning
(ICML), pp. 1597–1607, 2020. 3

[7] J. Li, P. Zhou, C. Xiong, and S. Hoi, “Prototypical con-
trastive learning of unsupervised representations,” in Inter-
national Conference on Learning Representation (ICLR),
2021. 3

[8] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-
based algorithm for discovering clusters in large spatial
databases with noise.,” in ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), vol. 96,
pp. 226–231, 1996. 3

[9] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised fea-
ture learning via non-parametric instance discrimination,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3733–3742, 2018. 3

[10] T. Wang and P. Isola, “Understanding contrastive representa-
tion learning through alignment and uniformity on the hyper-
sphere,” in International Conference on Machine Learning
(ICML), pp. 9929–9939, 2020. 3

[11] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple contrastive
learning of sentence embeddings,” in Proceedings of the
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 6894–6910, 2021. 3

[12] G. J. McLachlan and T. Krishnan, The EM algorithm and
extensions. John Wiley & Sons, 2007. 4

[13] C. J. Wu, “On the convergence properties of the EM algo-
rithm,” The Annals of statistics, pp. 95–103, 1983. 4

[14] V. Hasselblad, “Estimation of finite mixtures of distributions
from the exponential family,” Journal of the American Sta-
tistical Association, vol. 64, no. 328, pp. 1459–1471, 1969.
4

[15] J. H. Wolfe, “Pattern clustering by multivariate mixture
analysis,” Multivariate behavioral research, vol. 5, no. 3,
pp. 329–350, 1970. 4

[16] N. Laird, “Nonparametric maximum likelihood estimation
of a mixing distribution,” Journal of the American Statistical
Association, vol. 73, no. 364, pp. 805–811, 1978. 4

[17] D. B. Rubin and D. T. Thayer, “EM algorithms for ml factor
analysis,” Psychometrika, vol. 47, no. 1, pp. 69–76, 1982. 4

[18] H. Rao, S. Wang, X. Hu, M. Tan, Y. Guo, J. Cheng,
X. Liu, and B. Hu, “A self-supervised gait encoding ap-
proach with locality-awareness for 3D skeleton based per-
son re-identification,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, no. 01, pp. 1–1, 2021. 4


