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Understanding how well a deep generative model cap-
tures a distribution of high-dimensional data remains an
important open challenge. It is especially difficult for cer-
tain model classes, such as Generative Adversarial Networks
and Diffusion Models, whose models do not admit exact
likelihoods. In this work, we demonstrate that generalized
empirical likelihood (GEL) methods offer a family of di-
agnostic tools that can identify many deficiencies of deep
generative models (DGMs). We show, with appropriate spec-
ification of moment conditions, that the proposed method
can identify which modes have been dropped, the degree
to which DGMs are mode imbalanced, and whether DGMs
sufficiently capture intra-class diversity. We show how to
combine techniques from Maximum Mean Discrepancy and
Generalized Empirical Likelihood to create not only distri-
bution tests that retain per-sample interpretability, but also
metrics that include label information. We find that such tests
predict the degree of mode dropping and mode imbalance up
to 60% better than metrics such as improved precision/recall.

1. Introduction
In an era that has witnessed deep generative models

(DGMs) produce photorealistic images from text descrip-
tions [55, 62, 63], speech rivaling that of professional voice
actors [8, 20, 49], and text seemingly indistinguishable from
writing on the internet [5, 50], it perhaps seems quaint to
focus on better evaluation of such models. One might
reasonably claim that such evaluation may have been
useful prior to the development of these models, but such
evaluation is certainly less important now. They might
further bolster their claim by noting that researchers have
already proposed reasonable metrics for these modalities —
Fréchet Inception Distance for images [26], Mean Opinion
Score (MOS) for speech, and perplexity for text —, and
the results have been so compelling that researchers
and practitioners have begun to deploy such models in
downstream tasks [1, 3, 48, 80]. So why should we focus on
better evaluation now?

We are advocating for better and more nuanced evaluation
now precisely because DGMs have reached sufficient matu-
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Figure 1. Empirical Likelihood methods can identify model sam-
ples outside of the data distribution, and data samples outside of
the model distribution. In this example, we use a two-sample gen-
eralized empirical likelihood test to evaluate how well a Cascaded
Diffusion Model trained on ImageNet captures the “Frilled Lizard”
class. The three samples on the bottom right show samples from
the data distribution the model is not likely to represent, and those
on the top right show samples from the model not likely to be in
the data distribution. These examples have 0 probability in the
empirical likelihood test.

rity to be used in downstream tasks. When Deep Generative
Models struggled to produce realistic 32× 32 images, a re-
searcher working on the model may not have found nuanced
evaluation useful. Now that DGMs can credibly produce real-
istic megapixel images from text input, that same researcher
may find more nuanced evaluation helpful to understand
what deficiencies still exist. This view reflects recent trends
in generative model evaluation, as researchers have now
started to adopt metrics such as precision/recall [42] to better
understand how the model is misspecified.

Our approach comprises three parts: a moment condition
on the DGM and data distributions that tells us if the model
captured a salient property of the data distribution; a score
that indicates how well a moment condition is satisfied; and
a decomposition of that score that shows how each test point
contributed. From these three elements, we can diagnose
how a DGM is misspecified.

We observe that many evaluation metrics can be ex-
pressed as a set of moment conditions — for example,
Fréchet Inception Distance can be recast as the condition
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that the first and second moments of Inception v3 Pool3
(further denoted as “Pool3”) features match. Then, with a set
of moment conditions as our specification, we employ the
machinery of Empirical Likelihood methods [51] to provide
us both the aggregate and per-sample scores.

The Empirical Likelihood is a moment condition test
that approaches the problem by answering the following
question: how much must the data distribution change in
order to satisfy the moment condition? Typically, researchers
use these tests to determine whether a moment condition is
satisfied. We find that beyond just identifying whether a
moment condition is satisfied, under certain conditions on
the moments, the changed distribution can tell us how a
DGM is misspecified. Our main contribution is elucidating
the conditions under which we can use Empirical Likelihood
methods as a diagnostic tool. In the process, we introduce
four new tests and show the following:

Mode dropping. We show how to create moment con-
ditions that identify which modes have dropped, without
access to label information from the model.

Mode imbalance. We experimentally show that when a
DGM samples one mode more frequently than others, GEL
methods can predict the degree of this mode imbalance.

Interpretable tests. We detail how to use moment condi-
tions from Maximum Mean Discrepancy [22] approaches to
create interpretable tests.

Improper label conditioning. By including label infor-
mation, we create tests that identify when a label-conditioned
generative model ignores its conditioning label.

2. Background

In this section, we provide a brief background on the
Empirical Likelihood and moment conditions useful for gen-
erative model evaluation. Both of these areas have a rich
history of their own. We refer the reader to the excellent
monograph by [52] for a broader discussion on Empirical
Likelihood and [25] for moment restrictions.

Generalized Empirical Likelihood The Empirical
Likelihood (EL) [51] is a classical nonparametric method
of statistical inference. Originally, EL was proposed as
a method of inference on the mean: given n independent
samples x1, . . . , xn ∈ Rd from unknown distribution p,
EL determines whether the mean of p is equal to a known
constant c ∈ Rd. EL is unique in its approach, as it
models the samples with a weighted empirical distribution
Pπ(x) =

∑n
i=1 πiI[xi=x], with weights πi that satisfy the

rules of probability (namely that
∑
i πi = 1, πi ≥ 0). It

finds, among all distributions Pπ that match the mean con-
dition EPπ [x] ≡

∑n
i=1 πixi = c, the one that maximizes

the likelihood
∏
i πi. This “empirical likelihood” can be

expressed as the solution to the convex problem

max
{π|

∑
i πi=1,πi≥0}

n∑
i=1

log πi s.t. Ex∼Pπ
[x] = c (1)

We denote by π∗ and Pπ∗ the weights and implied
distribution, respectively, that solve Eq. (1), and abbreviate
“subject to” to “s.t.”. Intuitively, if Ex∼p[x] = c, then
we expect Pπ∗ to be “close” to the empirical distribution
P̂n(x) ≡

∑n
i=1 n

−1I[xi=x].
1 Eq. (1) makes this notion

precise by measuring the closeness of the two distributions
with the KL divergence DKL(P̂n ∥ Pπ). If no distribution
satisfies the mean constraint (which is equivalent to the mean
not lying in the interior of the convex hull of {xi}2), then
by convention the empirical likelihood and KL divergence
are −∞ and ∞, respectively.

We use two extensions for generative model evalua-
tion. The first extension is replacing the mean condition
EPπ

[x] = c with a moment condition Ex∼Pπ
[m(x; c)] = 0

[54], making the method much more general. The second is
replacing the KL divergence with one from the Cressie-Read
family3 [11]. Using other members relaxes the condition
that πi be strictly positive, and is useful for identifying mode
dropping. The resulting objective is called the Generalized
Empirical Likelihood (GEL):

min
{π|

∑
i πi=1,πi≥0}

D(P̂n ∥ Pπ) s.t. Ex∼Pπ
[m(x; c)] = 0

(2)
In this work, we use two members of the family, shown
in the top panel of Tab. 1: the “exponential tilting” (ET)
objective, and the “Euclidean likelihood”.4 We also use a
third extension, a two-sample version of the above test, but
we defer discussion of this extension to Sec. 3.2.

Moment Conditions We note that many evaluation
metrics are statistics of moments. They may be as
simple as checking if low-order moments match. Indeed,
many popular metrics for generative model evaluation
are statistics of a low-order of moments: for example,
Fréchet Inception Distance and Kernel Inception Distance
are statistics of the first two and three moments, respec-
tively. They may also be as complex as a full distribution
test: for a likelihood-based model, the condition that
Ex[∇θ log pθ(x)] = 0 implies the likelihood is maximized.
By decoupling the moment condition from the statistic, we
can construct alternative tests based on GEL objectives. The

1In absence of the mean constraint
∑n

i=1 πixi = c, π∗ = n−11, the
implied distribution Pπ∗ (x) is the empirical distribution, also known as
the nonparametric maximum likelihood estimate of the sample [37].

2Appendix A.2 includes further discussion of the convex hull condition.
3This family of divergences are of the form CR(λ) =
2

λ(λ+1)

∑
i[(nπi)

−λ − 1].
4The latter objective is mainly of intellectual interest: as the solution

is proportional to the Hotelling T-square statistic [29], we can recast any
T-square statistic as a GEL.



Name Objective Divergence πi > 0 πi = 0 πi < 0

Empirical Likelihood
∏
i πi DKL(P̂n ∥ Pπ) Y N N

Exponential Tilting −
∑
i πi log πi DKL(Pπ ∥ P̂n) Y Y N

Euclidean Likelihood 1
2

∑
i(πi − n−1)2 1

2

∑
i(πi − n−1)2 Y Y Y

Name Population Statistic S Condition at S = 0 Equivalent m(x; c) c
Mean (µx − c)⊤(µx − c) µx = c x− c c
Score Function ∥E[∇θ log pθ(x)]∥2 Maximum Likelihood ∇θ log pθ(x) 0
Fréchet Inception Distance ∥µx − µy∥2 + tr(Σx +Σy − 2(ΣxΣy)

1/2) µx = µy,Σx = Σy [ϕ(x), ϕ(x)ϕ(x)⊤]− c Ey[[ϕ(y), ϕ(y)ϕ(y)⊤]]
Mean Embedding

∑
i(Ex[k(x, ti)]− Ey[k(y, ti)])2 P = Q =⇒ S = 0 a.s., P ̸= Q =⇒ S ̸= 0 a.s. k(x, ti)− k(y, ti) i = 1, . . . ,W 0

Table 1. Top: Generalized Empirical Likelihood objectives and valid values of πi. Bottom: Common statistics as moment conditions.

bottom of Tab. 1 shows some common examples and the
implied moment conditions.

There exist two issues with applying the Empirical Like-
lihood to the moment conditions in the table: with the ex-
ception of the score function, the moment conditions are not
sufficient to distinguish between two distributions; and the
dimensionality of the moment conditions may be extremely
high, leading to statistical and computational challenges.
While the first issue might not be particularly problematic,
as we may be more interested in usability than in theoretical
robustness, the second issue is more pressing, as we aim to
keep the dimensionality relatively low.

A particularly appealing set of moment restrictions that
addresses these issues are those given by the Maximum
Mean Discrepancy (MMD) [22]

D2(p, q) = E
x1,x2

[k(x1, x2)] + E
y1,y2

[k(y1, y2)]− 2 E
x,y

[k(x, y)]

(3)
where x, x1, x2 ∼ p and y, y1, y2 ∼ q. With the appropriate
choice of kernel — such as when the kernel is characteristic
[19] or universal — D2(p, q) = 0 iff p = q, and, unlike
competing approaches, unbiased estimators exist. Despite
these appealing properties, metrics based on MMD, such
as Kernel Inception Distance (KID) [2], perhaps due to the
O(n2) computational cost, have not enjoyed widespread
adoption. More importantly, a straightforward inclusion of
the MMD constraint into Eq. (2) is computationally difficult,
as the constraint is a nonlinear function of πi.

Instead, we focus on an alternative characterization
based on Mean Embeddings (ME) [10, 30]. In this
approach, one tests equality of distributions p and q by
comparing mean embeddings µp(t) ≡ Ex[k(x, t)] and
µq(t) ≡ Ey[k(y, t)], where t is a witness point sampled
from a third distribution r. A somewhat remarkable property
is that, if k is characteristic, analytic, and integrable, and
r is absolutely continuous with respect to the Lebesgue
measure,

∑
w(µp(tw) − µq(tw))

2 > 0 a.s. if p ̸= q and∑
w(µp(tw)− µq(tw))

2 = 0 a.s. if p = q.5

Previous works [10, 30] define a semimetric nz̄⊤Σ−1
z z̄,

5One can interpret this condition colloquially as satisfying the axiom of
coincidence with probability 1. The aforementioned work establishes that
the statistic also satisfies the other axioms of a distance “with probability 1”
(this notion of distance is called a random metric).

where z̄ ≡ 1
n

∑
i zi, Σz ≡ 1

n−1

∑
i(zi − z̄)(zi − z̄)⊤ and

zi = [k(xi, t1) − k(yi, t1), . . . , k(xi, tW ) − k(yi, tW )]⊤.
This T-square statistic can be written as the solution (up to a
constant) to the Euclidean likelihood with moment condition
Ez[z] = 0.

min
{π|

∑
i πi=1}

1

2

n∑
i=1

(
πi − n−1

)2
subject to

n∑
i=1

πi



k(xi, t1)− k(yi, t1)
...

k(xi, tW )− k(yi, tW )


= 0

(4)

Note that the moment condition is linear in π and is within
the GEL framework. In the following section, we modify
Eq. (4) to better diagnose DGM deficiencies.

3. GEL for Evaluating Generative Models
Setup We assume that we have samples xi from the

data distribution p, and access to a DGM with distribution
q, from which we can generate samples yj . In the GEL
approach to generative model evaluation, we make three
choices: the constant c, which is a function of the generative
model distribution q and embeds relevant information about
the DGM; the associated moment function m(x; c), whose
expectation equals 0 should relevant information about p
and q match; and the divergence D(P̂n ∥ Pπ), which forms
the objective. Before describing the proposed metrics, we
provide a motivating example.

3.1. A Motivating Example

To illustrate the utility of GEL method for DGM
evaluation, we create a simple test that identifies which
modes the generative model has dropped. Ours is a GEL
test of the mean: c = Ey∼q[ϕ(y)] is the mean of a feature
function ϕ, m(x; c) = ϕ(x) − c is the moment function,
and the reverse KL DKL(Pπ ∥ P̂n) is the divergence. The
resulting problem is an exponentially tilting GEL.

The test requires a fourth choice, an appropriate feature
space ϕ. The key idea for choosing ϕ is that if a test set
contains samples x from a missing mode, ϕmust be designed
such that the weight πi of feature ϕ(xi) goes to zero. The
following lemma offers some insight into one approach.
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No. Missing Modes 0 2 4 6 8

Po
ol

3

Chance 0.0000 0.3249 0.4748 0.6063 0.7435
Improved Recall 0.0174 0.3068 0.4368 0.5712 0.6401
Coverage 0.0021 0.1582 0.3154 0.4142 0.4811
GEL (Ours) 0.0092 0.1427 0.2360 0.3059 0.3670

No. Missing Modes 0 2 4 6 8
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Y
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Chance 0.0000 0.3249 0.4748 0.6063 0.7435
Improved Recall 0.0154 0.2070 0.3625 0.4988 0.5094
Coverage 0.0023 0.2196 0.3712 0.4749 0.5588
GEL (Ours) 0.0055 0.1465 0.2460 0.3122 0.3791

Figure 2. Mode dropping detection on CIFAR-10 data using Pool3 features (Left panel) or BYOL features (Right panel). We vary the
number of missing modes in the training set and compare three different metrics computed on the test set: aggregate improved recall
“weights” (Top row), aggregate Coverage “weights”(Second) and GEL weights (Third). Weights in the figures rescaled such that the optimal
weight for a mode present in the training set is 1. Tables at the bottom show the Hellinger distance between ground truth probabilities
and weights obtained using the three metrics.

Lemma 1. Assume that the true data distribution p is a
mixture of the model distribution q and another distribution
v. We consider an estimation Êq[ϕ(y)] of the model mean
obtained using samples yi, i ∈ I ⊂ N from q; and a test set
composed of samples from p. The test set can be split into
samples {s1, . . . , sm} ∼ v and samples {ym+1, . . . , yn} ∼
q. Then, the mean equality condition is

Êq[ϕ(y)] =
m∑
i=1

πiϕ(si) +

n∑
i=m+1

πiϕ(yi) (5)

If the convex hull Conv{ϕ(si), i = 1, . . . ,m} does not in-
tersect with Span{ϕ(yi), i ∈ I ∪ {m + 1, . . . , n}} then
πi = 0, i = 1, . . . ,m.

The proof can be found in Appendix B. Note that deep
features, such as those from the Pool3 layer of the Inception
v3 network [74], the FC2 layer of the VGG16 network [68],
or BYOL features [23], approximately satisfy these proper-
ties. As features lie in the non-negative orthant (as it is an
output of ReLU), 0 does not lie within the convex hull of
any set of points. Since the features of different classes are
approximately linearly separable, it is unlikely that linear
combination of features of a dropped mode would be part of
the solution that satisfies the mean constraint.

In addition to the features, we chose the reverse KL di-
vergence as our objective, since by construction we require
πi to be 0 for certain test set samples. Note that we need not
worry about the normalization of ϕ(x), since we obtain the
same πi for any full-rank linear transformation of ϕ.

Experiment: To illustrate the performance of the method
when modes are missing, we conduct a controlled study. We

construct synthetic generative models from the CIFAR-10
training set [41]. Each of these “generative models” contains
5,000 total examples per class, with a varying number of
missing classes (ranging from 0 to 8). We use the CIFAR-10
test set as the data distribution.

As shown in Fig. 2, GEL weights are highly sensitive to
which modes were dropped, and can be used as a diagnostic
tool for evaluating models.6 We note that our approach is
sensitive to which modes were dropped even though the
features used were not trained on CIFAR-10 data. We also
compare the method to the improved recall metric [42], and
per-class coverage probabilities [47] (the latter with four
nearest neighbors, as parameter gave us the recommended
.95 coverage for 0 dropped modes). The former substantially
overestimates the probability of the missing mode. The
latter, while performing better than recall, overestimates
probabilities for multiple missing modes. GEL outperforms
both and moreover, does not require tuning of the highly
sensitive nearest neighbor parameter k. Finally, as shown
on the right-hand side of Fig. 2, GEL is not hugely reliant
on the Pool3 space: it performs similarly on Bootstrap Your
Own Latent (BYOL) features.

3.2. Proposed Tests

We extend the test in Sec. 3.1 in various ways to improve
upon the diagnostic accuracy of the metric, and to make it
more broadly applicable for generative model evaluation. We
focus on three specific areas. First, we use ideas from MMD

6Empirical likelihoods are also highly sensitive, but they also end up at
the boundary of the convex hull after a few modes are dropped.



and ME to create GEL test of distributions. Second, we fur-
ther use ideas from kernelization to include label information
in the constraint, creating a test for conditional generative
models. Finally, to make the metric more robust to model
misspecification, improve interpretability of the metric, and
ensure model comparison, we introduce a two-sample test
and a modification of the one-sample test.

A Distribution Test by combining GEL and ME If the
test in Sec. 3.1 is the test of the mean, then by analogy, one
only needs to replace the mean condition to create GEL tests
of distributions. We use moment conditions based on Mean
Embeddings (ME) referenced in Sec. 2 for the appropriate
moment restrictions, which importantly are linear in π.

To render the test useful for DGM evaluation, we make
three design choices. First, similar to the mean test in
Sec. 3.1, we use a feature space. Second, to improve
interpretability, we use multiple witness points (typically
50–1,024), which are sampled from a validation set of the
data distribution.7 Finally, we use the exponential kernel
k(x, y) = exp(x⊺y/d) (where d is the dimension of the
vectors), which is analytic and characteristic on compact sets
of Rd [46].8 This gives us the Kernel GEL (KGEL) test

min
{π|

∑
i πi=1,πi≥0}

DKL(Pπ ∥ P̂n) subject to

n∑
i=1

πi



k(ϕ(xi), ϕ(t1))
...

k(ϕ(xi), ϕ(tW ))


= Ey∼q

 k(ϕ(y), ϕ(t1))...
k(ϕ(y), ϕ(tW ))

 (6)

Including Label Information via Kernelization A sec-
ond benefit of kernelization is that it allows us to easily
include label information in the metric, enabling us to create
tests for conditional generative models. The extension is
straightforward: if we consider x = (x(i), x(l)) to include
both the image x(i) and its associated label x(l), respec-
tively, then we can construct kernels k(x, y) that include
both image and label information. We use the product kernel
k(x, y) = ki(x

(i), y(i))kl(x
(l), y(l)), where ki and kl are

image and label kernels, respectively. If ki and kl are univer-
sal, then the product kernel is also universal and therefore
characteristic [73]. A test on the joint distribution is simply
Eq. (6) with the appropriate product kernel.9

The choice of label kernel depends on the type of label
information. If the dataset contains a small number of labels,
the delta kernel, kl(x(l), t(l)) = I[x(l)=t(l)] is an appropriate

7Technically, this violates the condition that the witness distribution be
absolutely continuous with respect to the Lebesgue measure. We could
easily fix the violation by adding a small amount of Gaussian noise to the
witness points. This, however, makes no practical difference to the resulting
GEL solution.

8Also, the kernel is trivially integrable on compact sets of Rd.
9As we use exponential kernel, which is characteristic but not universal,

the product kernel may not be characteristic. We find this distinction to be
more of a theoretical than practical concern.

choice (as it is universal [46]). kl assigns 0 similarity to
two points that do not have the same label. We use this test
in Sec. 4.1 to identify samples where DGMs ignore label
information.

When a label hierarchy is available, such as for ImageNet,
we can construct a kernel that measures similarity between
labels in a more fine-grained way. First, we associate a
label with the path from the root node to the label leaf node,
encoding it as a string. We then compute similarity between
labels using any string kernel, with one simple option being
the special case of the Smith-Waterman score using no gap
penalty and an identity substitution matrix [78]. We provide
further details in Appendix D.

Accounting for Model Misspecification with Two-
sample Tests DGMs may not only fail to represent part of
the data distribution, but also may generate samples outside
of the support of the data distribution. One can perform the
previously described tests by letting c be a function of data,
and x DGM samples. There exists, however, a larger issue:
if the DGM produces many out of distribution examples (or
a single example sufficiently out of distribution), then there
may not exist a π that satisfies the moment restriction.10

We address these issues by using a two-sample extension
to GEL [53]. In this version, we assign a first set of
probabilities πi to test points xi, and a second set of
probabilities ψj to model points yj . The two-sample
variant of the mean test, which we denote Two-sample
Generalized Empirical Likelihood (GEL2) is

min
π,ψ≥0

D(P̂n ∥ Pπ) +D(P̂m ∥ Pψ) subject to

n∑
i=1

πiϕ(xi) =

m∑
j=1

ψjϕ(yj),

n∑
i=1

πi =

m∑
j=1

ψj = 1.
(7)

The two-sample test finds, among distributions that satisfy
the moment conditions, the two that are closest to their re-
spective empirical distributions. We call the ME version the
Kernel Two-sample Generalized Empirical Likelihood
(KGEL2). This variant improves upon the one-sample test
in two ways. First, it opens up more diagnostic tools: we
can find DGM samples that are not in the support of the data
distribution (Sec. 4.2). Second, it provides finite scores for
a wider range of generative models: the intersection of the
two convex hulls only needs to be non-empty.

The intersection of the convex hulls may be empty, in
which case the empirical likelihood is −∞. In practice this
only occurs with particularly poorly performing generative
models, in which case the per-sample probabilities are
unlikely to be helpful.

Calculation We solve GEL objectives using Newton’s
method on the dual problem. The computational complexity

10For mean tests, this is geometrically equivalent to the model mean not
lying in the convex hull of test points. Again, due to space constraints, we
defer discussion of the convex hull condition to Appendix A.2.
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No. Missing Chance Improved Coverage KGEL
Modes Recall (Ours)

0 0.0000 0.0168 0.0012 0.0066
2 0.3249 0.3067 0.1700 0.1466
4 0.4748 0.4363 0.3044 0.2409
6 0.6063 0.5697 0.4226 0.3140
8 0.7435 0.6137 0.4805 0.2732

Mode 1 Chance Improved Coverage KGEL
Probability Recall (Ours)

0.1 0.3249 0.3021 0.2808 0.1206
0.3 0.1452 0.1313 0.1354 0.0486
0.5 0.0000 0.0080 0.0007 0.0030
0.7 0.1452 0.1506 0.1323 0.0434
0.9 0.3249 0.3238 0.2706 0.1207

Figure 3. Comparison of Evaluation Metrics on mode dropping (panel (a)), and mode imbalance (panel (b)). In the mode dropping
experiment, up to 8 modes are dropped, and the table on the bottom left is the Hellinger distance between the oracle probability and the
calculated one. In the mode imbalance experiment, we calculate the Hellinger distance between oracle and calculated probabilities, and
the mode probability changes.

is O(nd3), where n and d are the number of samples and
dimensionality, respectively. For detailed derivations of the
dual and for code, we refer the reader to Appendix C.

4. Experiments
4.1. Validation

Detecting Mode Dropping We repeat the experiment
in Sec. 3.1 with the KGEL test. For our “generative model”
we use 40,000 images from the CIFAR-10 training set, with
4,000 images per class. We use the remaining 10,000 images
in the training set to draw 1,024 witness points. Otherwise,
the experimental setup is identical.

The results in Fig. 3(a) show improved results of the
KGEL test relative to the GEL test and other baselines. In
Appendix E.1, we also show similar performance when
using StyleGAN2+ADA [34] samples instead of CIFAR-10
training data.

Detecting Mode Imbalance In more realistic scenarios,
a generative model may not drop a mode entirely, but instead
undersample it relative to other modes. To better understand
how accurately the proposed method predicts the degree of
mode imbalance, we run a controlled experiment varying
the number of examples from two modes. We use the first
five categories — airplane, automobile, bird, cat, and deer
— as the first mode, and the remaining categories as the
second. We vary the proportion of examples in the first mode
from 0.0 to 1.0, and test KGEL, a normalized improved
recall, and coverage to see how well the metrics recover
the probabilities. Note that at probabilities 0 and 1, this is
equivalent to five modes being dropped.

The results in Figure 3(b) show that our proposed method
significantly outperforms competitors. At equal probability,
all methods perform similarly. For any degree of unequal
probability, KGEL significantly outperforms competitors:
the second best method is 29% to 212% worse.

Identifying Improper Conditioning with Label Infor-
mation When a generative model synthesizes an image from
an incorrect class (say a dog instead of butterfly), a test of
only images would not identify this issue. This is true of the
standard metrics such as FID, IS, and improved precision
and recall; and less standard ones such as density coverage.

With KGEL tests that include label information, we can
identify the degree of mislabeling. In this test, we take the
training set as the generative model distribution. To simulate
incorrect conditioning, we change the labels for 10% to 60%
of the training set examples on CIFAR-10. We then use the
kernel test, with kernel k(x, y) = ki(x

(i), y(i))kl(x
(l), y(l)),

where ki is the exponential kernel, and kl the delta kernel.
The results in Fig. 4 compare the proposed KGEL test

to improved precision and density, both calculated on a
per-label basis.11 For improved precision, we vary the value
of k to obtain the precision-recall curve, while for density,
we vary k to optimize for performance of the area under the
precision recall curve.

We find that our proposed method significantly out-
performs improved precision, and density using k so that
expected coverage is greater than 0.95. One can improve
results by artificially increasing k. Here we increase it

11For this test, we run 10 tests, one for labels airplane, automobile, etc.
KGEL runs only once.
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Figure 4. Performance of various metrics under label corruption. Left: Precision-Recall Curve at 30% label error. Middle: Precision-Recall
Curve at 60% label error. Right: Area Under Precision-Recall Curve for different label errors.

to 100, over a factor of 30 of the suggested rate. Even
with careful tuning of the baselines, however, KGEL still
outperforms these methods without any tuning of its own,
suggesting that the proposed method is more capable of
identifying improper label conditioning.

4.2. Real-World Applications

Assessing Within-Class Distributions using Two-
Sample Tests We use the Kernel Two-sample GEL (KGEL2)
test to better understand how well generative models capture
within-class distributions. We use two DGMs in this study —
BigGAN-deep [4] and the Cascaded Diffusion Model (CDM)
[28]— as these models represent among the best examples of
their respective model classes. The KGEL2 test uses Pool3
features, 256 witness points from the ImageNet v2 dataset
[60], and an exponential kernel. The test compares per-class
samples from the ImageNet training set and an equivalent
number from the DGM. The results in Fig. 5 show Monarch
butterfly samples from the model least representative of the
data distribution (model probability 0.0), and samples from
data distribution least representative of the model (data prob-
ability 0.0). BigGAN-deep is least able to represent butter-
flies that comprise a large portion of the image and swarms
of butterflies, while CDMs are least able to represent swarms
of butterflies. We show more examples in Appendix F.1.

When we select the 50 samples per class with the lowest
model probability (for a total of 50,000 examples), Inception
Score of the CDM decreases from 166.2 to 36.82, and of
BigGAN-deep from 218.1 to 88.37.

Understanding Classifier Guidance and the Trunca-
tion Trick DGMs often employ a mechanism for trading
off sample diversity and sample quality. Two of the most
widely used are classifier guidance [69, 72] for diffusion
models, and the truncation trick [4] for GANs. In this
section, we use the labeled KGEL2 test to help us better
understand the effect of these methods. We use the Ablated
Diffusion Model (ADM) [13] to measure the effect of
classifier guidance, and BigGAN-deep [4] to measure
the effect of the truncation trick. Fig. 6 show the results
when the guidance parameter varies from 0.0 to 10.0, and
the truncation parameter τ varies from 0.2 to 1.0. As the
truncation parameter decreases, unsurprisingly, the number
of examples with 0 data probability increases dramatically

Table 2. GEL for Different Models on ImageNet 256×256. Num-
bers reported as 2D(P̂n∥Pπ∗ ). For two-sample tests, the numbers
reported are model/test 2D(P̂n∥Pπ∗ ). Table 4 contains a complete
set of results. VQGAN∗ denotes parameters k = 600, t = 1.0,
p = 0.92 and VQGAN∗∗ parameters k = 600, a = 0.05, p = 1.0.

PAPER MODEL
KGEL KGEL KGEL2 KGEL2

EL ET EL ET

- THEOR. OPT 1.0 1.0 1.0/1.0 1.0/1.0

- TRAINING SET 1.138 1.164 1.020/1.018 1.021/1.017

[4] BIGGAN-DEEP-τ=1.0 1.735 2.075 1.150/1.166 1.166/1.222

[4] BIGGAN-DEEP-τ=0.6 2.316 3.017 1.224/1.271 1.260/1.404

[59] VQ-VAE2 +∞ 40.55 2.933/2.730 5.851/5.723

[17] VQGAN∗ 4.443 9.034 1.295/1.495 1.487/1.717

[17] VQGAN∗∗ 1.772 2.219 1.175/1.202 1.148/1.158

[13] ADM 2.035 2.994 1.180/1.208 1.255/1.244

[13] ADM-G (1.0) 1.786 2.289 1.155/1.151 1.185/1.188

[28] CDM 1.857 2.467 1.161/1.166 1.210/1.204

(from 14 at τ = 1.0 to 3420 at τ = 0.2). For classifier
guidance, we find that optimal performance occurs at scale
1.0, while increasing the scale beyond this point increases
the number of examples with 0 data probability to 650.

Model Comparison We perform a comparison of many
popular ImageNet 256×256 models. Tab. 2 shows the re-
sult for some representative models, while we include a
full set of results in Tab. 4 (we also include results for
CIFAR-10 in Appendix E.2). To help delineate between
the performance of different models, we report results as
2DKL(P̂n ∥ Pπ) and 2DKL(Pπ ∥ P̂n) for empirical likelihood,
and exponentially tilting GEL, respectively. We find that per-
formance of BigGAN-deep, ADM with classifier guidance,
and VQGAN with 0.05 acceptance rate perform similarly.

5. Related Work

In contrast to the amount of research focused on improv-
ing generative models, comparatively little is focused on gen-
erative model evaluation metrics. There are, however, some
notable exceptions. Inception Score (IS) [65] was likely the
first broadly used evaluation metric, and measured sample
quality and class diversity. Followup work such as the Mod-
ified Inception Score [24] sought to address IS’s inability
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to measure within-class diversity. This class of metrics has
largely been replaced by Fréchet Inception Distance [26],
now the most popular metric for comparing DGMs. While
FID addressed many of the issues of IS, it suffered from sta-
tistical bias. Later work [2,9] proposed unbiased alternatives.

As deep generative models have improved, a number of
authors have proposed more nuanced metrics. A popular
approach has been to adopt precision and recall (PR) metrics
[15, 42, 47, 64]. These approaches first estimate approximate
manifolds of the data and model distributions, and then deter-
mine how many data and model samples lie in the model and
data manifolds, respectively. The manifold estimation step,
however, is highly sensitive to hyperparameters and number
of samples. Other “manifold” methods include the Geometry
Score [36] and the Intrinsic Multi-Scale Distance [76].

Metrics that do not fit the above categories include a met-
ric on human evaluation of sample quality [82], accuracy (on
real data) of classifiers trained on DGM data [18, 57, 66, 67,
81], and for GANs, metrics based on its latent space [35].

Even less literature exists in the machine learning com-
munity on Empirical Likelihood methods. Authors proposed
an EL test with linear-time MMD constraints [14] for testing
simple distributions (such as the Normal). GEL approaches
have been proposed for distributionally-robust optimiza-
tion [16,43] and for off-policy evaluation [12,32]. Finally, au-
thors introduced lower bounds on GEL objectives with func-
tional moment restrictions for parameter estimation [40].

6. Discussion

In this work, we proposed generalized empirical likeli-
hood methods as a tool for a better evaluation of DGMs. We
propose a set of interpretable tests that allow us to diagnose
deficiencies such as mode dropping and improper label con-
ditioning. Current results are promising, and the generality
of the approach may lead to new tests. In particular, we are
interested in using features of new modalities, such as text,
to better evaluate models such as text-conditioned DGMs.
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[58] Ali Razavi, Aäron van den Oord, Ben Poole, and Oriol
Vinyals. Preventing posterior collapse with delta-VAEs. In
Proceedings of the International Conference on Learning
Representations, 2019. 16



[59] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generat-
ing diverse high-fidelity images with VQ-VAE-2. In Advances
in Neural Information Processing Systems, 2019. 7, 15

[60] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do ImageNet classifiers generalize to Im-
ageNet? In Proceedings of the International Conference on
Machine Learning, 2019. 7

[61] Danilo J Rezende, Shakir Mohamed, and Daan Wierstra.
Stochastic backpropagation and approximate inference in
deep generative models. In Proceedings of the International
Conference on Machine Learning, 2014. 15

[62] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the Conference on Computer Vision and Pattern Recognition,
2022. 1

[63] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay
Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photo-
realistic text-to-image diffusion models with deep language
understanding. In Advances in Neural Information Processing
Systems, 2022. 1

[64] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier
Bousquet, and Sylvain Gelly. Assessing generative models
via precision and recall. In Advances in Neural Information
Processing Systems, 2018. 8, 21

[65] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training GANs. In Advances in Neural Information Pro-
cessing Systems, 2016. 7

[66] Shibani Santurkar, Ludwig Schmidt, and Aleksander Madry.
A classification-based study of covariate shift in GAN distri-
butions. In Proceedings of the International Conference on
Machine Learning, 2018. 8

[67] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari.
How good is my GAN? In Proceedings of the European
Conference on Computer Vision, 2018. 8

[68] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In
Proceedings of the International Conference on Learning
Representations, 2015. 4

[69] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In Proceedings of the Inter-
national Conference on Machine Learning, 2015. 7, 15

[70] Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. In Advances in
Neural Information Processing Systems, 2019. 16

[71] Yang Song and Stefano Ermon. Improved techniques for train-
ing score-based generative models. In Advances in Neural
Information Processing Systems, 2020. 16

[72] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equations.
In Proceedings of the International Conference on Learning
Representations, 2021. 7
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Figure 7. Illustration of the convex hull condition for one- and two-
sample generalized empirical likelihood. For one-sample empirical
likelihood to be finite, the c vector must lie in the interior of the
convex hull (top left). For the exponential tilting to be finite, c must
lie in the interior or on the boundary of the convex hull (top middle).
For two-sample empirical likelihood to be finite, the intersection
of the interior of the two convex hulls must be non-empty (bottom
left). For two-sample exponential tilting to be finite, the intersection
of the closure of the two convex hulls must be non-empty (bottom
middle). Euclidean Likelihoods are always finite (top and bottom
right).

A. Further Empirical Likelihood Background
A.1. Properties of Empirical Likelihood

From the perspective of generative model evaluation, the
following are two less important but nonetheless interest-
ing properties of the empirical likelihood that, due to space
constraints, were not included in the main text.

From a statistical hypothesis testing perspective, if
Ep[x] = c, then, similar to the Wilks’ Theorem
for the Likelihood Ratio Test (LRT) [6], the statistic
2nDKL(P̂n ∥ Pπ∗) = −2

∑n
i=1 log(nπ

∗
i ) converges to

a χ2 distribution.

Theorem 2 (adapted from [52]). Let x1, . . . , xn ∈ Rd be
samples drawn independently from distribution p having
mean c and finite covariance matrix Σ of rank q > 0. Then
−2
∑n
i=1 log(nπ

∗
i )

d−→ χ2
(q).

Similar results also hold for moment restrictions. Please
see Chapter 3.5 of [52].

We also note that the method has O(n−1) bias, so when
one compares models with two-sample tests, one should
ensure that the number of model samples should be equal.

A.2. Convex Hull Condition

The constraints for both empirical likelihood and expo-
nential tilting one-sample tests imply that, for the mean
test, objective is finite if and only if the mean can be rep-
resented as a convex combination of test points (and for a

moment test, 0 can be expressed as a convex combination of
m(xi; c)). For the empirical likelihood objective, the condi-
tion is slightly stronger, as we require πi > 0 (otherwise we
obtain log(0)). Geometrically, this is equivalent to the mean
lying in the interior of the convex hull of test points. For the
exponential tilting objective, the mean may also lie on the
boundary of the convex hull. For the Euclidean likelihood,
the mean may lie anywhere, as the constraint πi ≥ 0 is re-
moved. The top pane of Fig. 7 shows how the mean may lie
within the convex hull for different objectives.

For misspecified DGMs, one or more points may move
the mean outside of the convex hull. Furthermore, in high
dimensions, the mean may lie on the boundary, or just out-
side [75]. For these situations, we can use two-sample meth-
ods to extend the utility of GEL methods. In the two-sample
case, as shown on the bottom pane of Fig. 7, we only re-
quire the intersection of convex hulls of {x1, . . . , xn} and
{y1, . . . , ym} to have non-empty interiors for the empirical
likelihood objective, and merely non-empty for the exponen-
tial tilting objective, for the GEL to provide a finite score.
The Euclidean likelihood is always finite.

B. Proofs
Lemma 1. Assume that the true data distribution p is a
mixture of the model distribution q and another distribution
v. We consider an estimation Êq[ϕ(y)] of the model mean
obtained using samples yi, i ∈ I ⊂ N from q; and a test set
composed of samples from p. The test set can be split into
samples {s1, . . . , sm} ∼ v and samples {ym+1, . . . , yn} ∼
q. Then, the mean equality condition is

Êq[ϕ(y)] =
m∑
i=1

πiϕ(si) +

n∑
i=m+1

πiϕ(yi). (5)

If the convex hull Conv{ϕ(si), i = 1, . . . ,m} does not in-
tersect with Span{ϕ(yi), i ∈ I ∪ {m + 1, . . . , n}} then
πi = 0, i = 1, . . . ,m.

Proof. First, note that if
∑m
i=1 πi = 0 then πi = 0, i =

1, . . . ,m since the weights πi ≥ 0 are non-negative. Then
Lemma 1 follows. Assume now that

∑m
i=1 πi = a > 0.

Then, we can rewrite the mean condition in equation 5 as

1

a
Êq[ϕ(y)] =

1

a

m∑
i=1

πiϕ(si) +
1

a

n∑
i=m+1

πiϕ(yi)

(8)

⇐⇒ 1

a
Êq[ϕ(y)]−

1

a

n∑
i=m+1

πiϕ(yi) =
1

a

m∑
i=1

πiϕ(si).

(9)

By moving a into the sum and by writing a =
∑m
j=1 πj , the



right-hand side of equation 9 is given by

1

a

m∑
i=1

πiϕ(si) =

m∑
i=1

πi∑m
j=1 πj

ϕ(si)

∈ Conv{ϕ(si), i = 1, . . . ,m}

since
∑
i=1

πi∑m
j=1 πj

= 1. For the left-hand side of equa-
tion 9 it holds that

1

a
Êq[ϕ(y)]︸ ︷︷ ︸

∈Span{ϕ(yi),i∈I}

− 1

a

n∑
i=m+1

πiϕ(yi)︸ ︷︷ ︸
∈Span{ϕ(yi),i=m+1,...,n}

∈ Span{ϕ(yi), i ∈ I ∪ {m+ 1, . . . , n}}.

Putting everything together, we obtain a non-trivial inter-
section of Span{ϕ(yi), i ∈ I ∪ {m + 1, . . . , n}} and
Conv{ϕ(si), i = 1, . . . ,m}, which contradicts the assump-
tions of the Lemma. Therefore,

∑m
i=1 πi = 0.

C. Calculation
C.1. One-Sample

Once we have defined a functions for moment restrictions,
we can calculate the the empirical likelihood with relative
ease.12 For reference, the original Empirical Likelihood
problem with moment constraints is

max
{π|

∑
i πi=1,πi>0}

n∑
i=1

log πi s.t. Ex∼Pπ
[m(x; c)] = 0

The Lagrangian is

L(π;λ, ν) =−
n∑
i=1

log(πi) + ν

(∑
i

πi − 1

)

+ λ⊤

(
n∑
i=1

πim(xi; c)

)

Solving for π and ν gives us the dual problem:

max
λ

g(λ) = max
λ

n∑
i=1

log
(
1 + λ⊤m(xi; c)

)
and π∗

i =
(
n(1 + λ⊤m(xi; c)

)−1
. πi ≤ 1 implies that

1 + λ⊤m(xi; c) ≥ 1
n , which also ensures that πi ≥ 0.

Instead of solving a constrained optimization problem, we
modify the logarithm function to be a second order Taylor
approximation 1 + λ⊤m(xi; c) <

1
n according to [52].

max
λ

n∑
i=1

logmod
(
1 + λ⊤m(xi; c)

)
12We follow the derivation in Chapter 3.14 of [52].

where logmod(z) = log(1/n) − 1.5 + 2z − z2

2 when z <
1
n and the standard logarithm otherwise. For well-defined
problems, the optimum is the same. This unconstrained
convex objective is easily optimized using Newton’s method.

The empirical likelihood is finite if and only if 0 lies in
the interior of the convex hull of {m(xi; c), . . .m(xn; c)}
(see Fig. 7). If the mean lies outside of the hull, we say
that the empirical likelihood is −∞. This requires another
algorithm to check if the mean is in the convex hull. We
use the triangle algorithm [31], which tells us that either
the point lies outside of the convex hull, or that there exists
a point x such that d(x, µ) < ϵ, where ϵ is a user-defined
parameter. In this latter case, µ may lie on a boundary point
of the convex hull. At the boundary point, there are certain
πi that are 0, also leading to −∞ likelihood. In this case,
when solving for gm(λ), ∥λ∥ → ∞, which is easy to spot
during optimization. In practice, we stop optimization when
∥λ∥ > C or ∥∇λg(λ)∥ > D, for fixed constants C,D.
Algorithm 1 is the pseudocode for the empirical likelihood
calculation.

We use the same dual optimizer for the exponential tilting
objective:

max
{π|πi≥0}

−
n∑
i=1

πi log πi

subject to Ex∼Pπ [m(x; c)] = 0,

n∑
i=1

πi = 1

The Lagrangian is

L(π;λ, ν) =
n∑
i=1

πi log(πi) + ν

(∑
i

πi − 1

)

− λ⊤

(
n∑
i=1

πim(xi; c)

)
.

Solving for π and ν gives us the dual problem:

max
λ

g(λ) = max
λ

− log

(
n∑
i=1

exp(λ⊤m(xi; c))

)

= min
λ

log

(
n∑
i=1

exp(λ⊤m(xi; c))

)

with π∗
i = exp(λ⊤m(xi;c))∑

j exp(λ⊤m(xj ;c))
. g(λ) is concave as the objec-

tive is the negative log partition function [79]. We compose
the log partition function with 1

n exp(·) to give the objective

min
λ
f(λ) =

1

n

n∑
i=1

exp(λ⊤m(xi; c))

One can find an alternative derivation in [39], and pseu-
docode for this objective in Algorithm 2.



C.2. Two-Sample

We derive the dual problem for the two-sample expo-
nential tilting objective for the mean (for general moment
restrictions, the calculation is similar). For simplicity, we
assume both samples are of the same size. The objective is

max
{π,ψ|πi,ψj≥0}

−
n∑
i=1

πi log πi −
n∑
j=1

ψj logψj

subject to
n∑
i=1

πixi =

n∑
j=1

ψjyj ,

n∑
i=1

πi =

n∑
j=1

ψj = 1.

Making the following change in variables:

ξk ≡

{
1
2πk, 1 ≤ k ≤ n
1
2ψk−n, n+ 1 ≤ k ≤ 2n

zk ≡

{
[xk, 1]

⊤, 1 ≤ k ≤ n

[−yk−n,−1]⊤, n+ 1 ≤ k ≤ 2n

We obtain the program:

max
{ξ|ξk≥0}

−
2n∑
k=1

2ξk log 2ξk

subject to
2n∑
k=1

ξkzk = 0,

2n∑
k=1

ξk = 1

The Lagrangian for this objective (after removing the con-
stant factor of 2) is

L(ξ;λ, ν) =
2n∑
k=1

ξk log(ξk) + log(2)

2n∑
k=1

ξk

+ ν

(
2n∑
k=1

ξk − 1

)
− λ⊤

(
2n∑
k=1

ξkzk

)
We obtain the dual:

max
λ

g(λ) = max
λ

− log

(
2n∑
k=1

exp(λ⊤zk)

)
− log(2)

= min
λ

log

(
2n∑
k=1

exp(λ⊤zk)

)
− log(2)

Removing constants and composing with 1
n exp(·) gives

us:

min
λ
f(λ) =

1

n

2n∑
k=1

exp(λ⊤zk)

and optimal values:

π∗
i = 2

exp(λ⊤zi)∑
k exp(λ

⊤zk)
, ψ∗

j = 2
exp(λ⊤zj+n)∑
k exp(λ

⊤zk)

Algorithm 1 Empirical Likelihood Calculation

1: Set C,D = 1e8, γ = 1e− 8
2: Create m samples from a generative model yj ∼ q(y)
3: Calculate features ϕ(yj) ∈ Rd
4: Set c = 1

m

∑m
i=1 ϕ(yj)

5: Calculate features ϕ(xi) ∈ Rd for n samples in a test
set

6: Set m(xi; c) = ϕ(xi)− c
7: Check if 0 ∈ Conv{m(xi; c)} using triangle algorithm

[31]
8: if Convex hull condition fails then
9: return −∞

10: end if
11: Set λ ∈ Rd to 0
12: while ∥∇λg(λ)∥ > γ (Not Converged) do
13: Perform Newton Step (see App G.1 for code)
14: if ∥λ∥ > C or ∥∇λg(λ)∥ > D then
15: return −∞
16: end if
17: end while
18: Set πi = 1

n(1+λ⊤m(xi;c))

19: return
∑
i log(πi), π

Algorithm 2 Exponential Tilting Calculation

1: Set C,D = 1e8, γ = 1e− 8
2: Create m samples from a generative model yj ∼ q(y)
3: Calculate features ϕ(yj) ∈ Rd
4: Set c = 1

m

∑m
i=1 ϕ(yj)

5: Calculate features ϕ(xi) ∈ Rd for n samples in a test
set

6: Set m(xi; c) = ϕ(xi)− c
7: Check if 0 ∈ Conv{m(xi; c)} using triangle algorithm

[31]
8: if Convex hull condition fails then
9: return −∞

10: end if
11: Set λ ∈ Rd to 0
12: while ∥∇λg(λ)∥ > γ (Not Converged) do
13: Perform Half-Newton Step (see App G.2 for code)
14: end while
15: Set πi =

exp(λ⊤m(xi;c))∑
j exp(λ⊤m(xi;c))

16: return −
∑
i πi log(πi), π

C.3. Calculation Speed

As mention in Sec. 3, the computational complexity of
the method is O(nd3). We include further wall clock time
results here. Tab. 3 shows wall clock time of calculating the
metric for ImageNet 256× 256 models.

We also find that performing a full-rank PCA of features
prior to solving the GEL objective helps speed up conver-



Table 3. Time (in seconds) needed to calculate GEL for Different
Models on ImageNet 256×256. The table does not include time
to run the triangle algorithm, or time to calculate or load features.
VQGAN∗ denotes parameters k = 600, t = 1.0, p = 0.92 and
VQGAN∗∗ parameters k = 600, a = 0.05, p = 1.0.

PAPER MODEL
KGEL KGEL KGEL2 KGEL2

EL ET EL ET

- TRAINING SET 29.96 112.3 28.26 146.1

[4] BIGGAN-DEEP-τ=1.0 133.9 113.4 67.99 188.7

[4] BIGGAN-DEEP-τ=0.6 215.2 81.53 62.13 177.7

[59] VQ-VAE2 24.93 92.68 243.9 211.7

[17] VQGAN∗ 118.14 72.50 138.3 179.9

[17] VQGAN∗∗ 76.83 67.85 68.3 173.3

[13] ADM 129.4 80.50 75.39 154.4

[13] ADM-G (1.0) 120.4 75.37 64.31 187.4

[28] CDM 83.25 64.24 67.4 188.1

gence (without changing the objective or results).

D. Kernels for Labeled Hierarchies

When a label hierarchy is available, it provides a more
fine-grained way of measuring similarity between labels.
This is the case for ImageNet labels which are organized
in a multi-tree structure with progressively finer categories.
Instead of taking into account only the image label, which
corresponds to a leaf node, we can use the path from the
label to the root of its tree. For example, the label “border
collie” can be represented with the path
organism/animal/verterbrate/mammal/placental/carnivore/
canine/dog/working dog/shepherd dog/border collie, and
we can then define a kernel for which “golden retriever”
will be recognised as more similar to ”border collie” than
”coffee mug” since they share part of the categories in the
path. We can achieve this using any string kernel to com-
pute the similarity between two paths with nodes acting as
“characters”. One simple option for the kernel is the Smith-
Waterman (SW) similarity measure, a type of edit string
distance which compares two sequences by calculating the
minimum number of transformation operations (e.g. substi-
tution or gap/deletion) required to convert one sequence into
the other. While, in general, SW does not define a valid
kernel, the special case of SW when the substitution ma-
trix score is the identity matrix and there is no penalty for
deletions does [78].

E. Further Experimental Results

E.1. Mode Dropping Results with StyleGAN2+ADA

We perform the same experiment as in Sec. 4.1 using
StyleGAN2+ADA [34] generated samples, which achieved

Table 4. Expanded results of Table 2: GEL for Different Models
on ImageNet 256×256. Numbers are reported as 2D(P̂n∥Pπ∗ ), so
as to better delineate performance among models. For two-sample
tests, the numbers reported are model/test 2D(P̂n∥Pπ∗ ). VQGAN∗

denotes parameters k = 600, t = 1.0, p = 0.92 and VQGAN∗∗

parameters k = 600, a = 0.05, p = 1.0. For BigGAN-deep, “T”
denotes the truncation parameter. For ADM-G, the number in paren-
thesis denotes the guidance scale. “-” indicated the optimizer failed.

PAPER MODEL
KGEL KGEL KGEL2 KGEL2

EL ET EL ET

- THEOR. OPT 1.0 1.0 1.0 1.0

- TRAINING SET 1.138 1.164 1.020/1.018 1.021/1.017

[4] BIGGAN-DEEP-T=1.0 1.735 2.075 1.150/1.166 1.166/1.222

[4] BIGGAN-DEEP-T=0.8 1.964 2.443 1.183/1.201 1.203/1.288

[4] BIGGAN-DEEP-T=0.6 2.316 3.017 1.224/1.271 1.260/1.404

[4] BIGGAN-DEEP-T=0.2 3.965 6.354 -/- 1.396/1.955

[59] VQ-VAE2 +∞ 40.55 2.933/2.730 5.851/5.723

[17] VQGAN∗ 4.443 9.034 1.295/1.495 1.487/1.717

[17] VQGAN∗∗ 1.772 2.219 1.175/1.202 1.148/1.158

[13] ADM 2.035 2.994 1.180/1.208 1.255/1.244

[13] ADM-G (1.0) 1.786 2.289 1.155/1.151 1.185/1.188

[13] ADM-G (5.0) 2.492 3.602 1.232/1.232 1.294/1.324

[13] ADM-G (10.0) 3.219 5.160 1.279/1.299 1.378/1.442

[28] CDM 1.857 2.467 1.161/1.166 1.210/1.204

an Inception Score of 10.14 and FID of 2.42 on CIFAR-10.
We remove up to 8 classes during sampling (with 5,000 sam-
ples per class), similar to the experiment for the training
set. We choose k = 3 for Improved Recall, and k such that
expected coverage is 0.95 (if no modes were dropped) for
coverage. We use Pool3 features, and for KGEL, an expo-
nential kernel with 1,024 witness points from the CIFAR-10
training set. As shown in Fig. 8(a), we find that probabili-
ties estimated using KGEL are sensitive to up to 8 missing
classes and outperform baseline methods.

E.2. CIFAR-10 Model Comparison Results

For CIFAR-10, we perform a comparison of deep gener-
ative models from different model classes to compare perfor-
mance of both the models and the metric. We perform this
comparison across many model classes — Generative Adver-
sarial Networks [21], Variational Autoencoders [38, 61], and
diffusion models [69] — to include a broad range of results.

We perform the KGEL test using the CIFAR-10 test set,
40,000 and 10,000 samples from the model for one-sample
and two-sample tests, respectively. We use 1,024 witness
points from the CIFAR-10 training set. The results in Tab. 5
show an important point about the KGEL metric. Only Style-
GAN2+ADA and the DDPM have finite score, highlighting
how much EL penalizes model misspecification.
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No. Missing Chance Improved Coverage KGEL
Modes Recall (Ours)

0 0.0000 0.0281 0.0059 0.0176
2 0.3249 0.3317 0.1643 0.1413
4 0.4748 0.4723 0.3180 0.2503
6 0.6063 0.6128 0.4211 0.3326
8 0.7435 0.6723 0.4820 0.3405

No. Missing 64-dim 256-dim 1024-dim 2048-dimModes

0 0.0055 0.0051 0.0066 0.0117
2 0.1973 0.1679 0.1466 0.2164
4 0.3193 0.2704 0.2409 0.3064
6 0.3890 0.3485 0.3140 0.3905
8 0.3584 0.3208 0.2732 0.4294

Figure 8. (a) Comparison of Evaluation Metrics on mode dropping of StyleGAN2+ADA classes, and (b) evaluation of performance on
CIFAR-10 mode dropping of the KGEL tests based on the number of witness points. In both experiments, up to 8 modes are dropped,
and the tables on the bottom are the Hellinger distance between the oracle probability and the calculated one.

These two models stand out as having superior perfor-
mance compared to over methods across all tests.

Table 5. GEL for Different Models on CIFAR-10. Numbers are
reported as 2D(P̂n∥Pπ∗ ), so as to better delineate performance
among models.

PAPER MODEL
KGEL KGEL KGEL2 KGEL2

EL ET EL ET

- THEOR. OPT. 1.0 1.0 1.0/1.0 1.0/1.0
- TRAINING SET 1.198 1.217 1.026/1.027 1.027/1.027

V
A

E

[58] DELTA VAE +∞ 12.037 2.088/2.125 2.506/2.622
[77] NVAE-τ =0.7 +∞ 11.078 2.556/2.666 3.158/3.513
[77] NVAE-τ =1.0 +∞ 11.644 2.108/2.266 2.490/2.908
[7] VD-VAE +∞ 11.644 2.560/2.891 3.171/4.049

G
A

N

[45] SNGAN +∞ 13.454 1.584/1.730 1.740/2.030
[56] MOLM-1024 +∞ 12.542 1.649/1.751 1.856/2.047
[33] PROGAN +∞ 13.765 1.414/1.528 1.510/1.675
[4] BIGGAN +∞ 12.667 1.549/1.613 1.708/1.819
[34] STYLEGAN2+ADA 1.632 1.724 1.094/1.092 1.101/1.100

S
C

O
R

E
-B

A
S

E
D [70] NCSN-V1 +∞ 10.670 2.312/2.147 2.855/2.586

[71] NCSN-V2 +∞ 9.324 3.042/2.679 3.915/3.193
[71] NCSN-V2 (W/DENOI) +∞ 13.830 1.346/1.388 1.426/1.482
[27] DDPM 1.716 1.804 1.108/1.113 1.113/1.125

E.3. Picking Witness Points

For KGEL tests, we must choose both what type of dataset
we use for our witness points, and how many witness points
to use. For the first choice, we find that using a disjoint
subset from the same corpus yields the best results. One can,
however, use a different corpus and achieve similar results:
curiously, we find performance on mode dropping and mode
imbalance similar whether we use CIFAR-10 witness points

Table 6. Comparison of performance of KGEL tests on Mode
Dropping (left) and Mode Imbalance (right) using 1,024 CIFAR-10
and CelebA Witness Points.

Mode Dropping Mode Imbalance
No. Missing CIFAR-10 CelebA

Modes Witness Witness

0 0.0066 0.0074
2 0.1466 0.1548
4 0.2409 0.2503
6 0.3140 0.3226
8 0.2732 0.2861

Mode 1 CIFAR-10 CelebA
Probability Witness Witness

0.1 0.1206 0.1258
0.3 0.0486 0.0508
0.5 0.0030 0.0029
0.7 0.0434 0.0475
0.9 0.1207 0.1295

or CelebA [44] witness points (Tab. 6).
For the second, the number of witness points depends

on the number of examples in the test set. We found that
using roughly 1,000 witness points is a good choice for a
test set on the order of 10,000 points. In Fig. 8(b), we repeat
the mode dropping experiment in Sec. 4.1, using a varying
number of witness points, and find that using 1,024 points
yielded the best results.

F. Further Visualizations
F.1. Assessing Within-Class Distributions using

Two-Sample Tests

We extend the analysis in Fig. 5 of KGEL2 evaluation of
BigGAN-deep and the Cascaded Diffusion Model on per-
class ImageNet data and samples. Fig. 9 and Fig. 10 show
the outputs of KGEL2 for different classes on ImageNet.
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Figure 9. Model and test probabilities of the KGEL2 test can be used to identify data that the model cannot represent, and samples outside
the data distribution. In this example, we look at examples with 0 model and data probabilities for BigGAN-deep (left) and Cascaded
Diffusion Models (right). The blue and red histograms are those for model and data probabilities, respectively. The three top-right images
are model samples least like the data distribution (0 model probability), and the bottom-right are examples from the data distribution the
model cannot represent (0 data probability).
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Figure 10. Model and test probabilities of the KGEL2 test can be used to identify data that the model cannot represent, and samples outside
the data distribution. Here, we look at examples with 0 model and data probabilities for BigGAN-deep (left) and Cascaded Diffusion Models
(right). The blue and red histograms are those for model and data probabilities, respectively. The three top-right images are model samples
least like the data (0 model probability), and the bottom-right are examples from the data distribution the model cannot represent (0 data
probability).



G. GEL Iteration Pseudocode
G.1. Empirical Likelihood Iteration

def emp_lik_iteration(feature_diffs, params):
"""Calculate Newton step for empirical likelihood.

Args:
feature_diffs: array of m(x_i; c).
params: current parameters.

Returns:
params: parameters after a Newton step.
probs: updated per-sample probabilities.
log_lik: updated log likelihood.
best_log_lik: theoretically optimal log likelihood.
n_out_of_domain: number of points <0.0 or >1.0.
log_grad_norm: norm of the gradient (to check optimization).

"""
num_examples = feature_diffs.shape[0]
z = 1.0 + np.dot(feature_diffs, params)
inv_n = 1.0 / num_examples

# positive part of the modified logarithm
w_pos = 1.0 / z[z >= inv_n]
f_diff_pos = feature_diffs[z >= inv_n, :] * w_pos[:, np.newaxis]

w_neg = (2.0 - num_examples * z[z < inv_n]) * num_examples
f_diff_neg = feature_diffs[z < inv_n, :]
num_egs2 = num_examples ** 2

neg_hess = (np.dot(f_diff_pos.T, f_diff_pos)
+ np.dot(f_diff_neg.T, f_diff_neg) * num_egs2)

sc_f_diff_neg = f_diff_neg * w_neg[:, np.newaxis]
log_grad = np.sum(f_diff_pos, axis=0) + np.sum(sc_f_diff_neg, axis=0)
log_grad_norm = np.linalg.norm(log_grad)

direction = np.linalg.solve(neg_hess, log_grad)
params += 1.0 * direction
n_out_of_domain = f_diff_neg.shape[0]

probs = 1.0 / (num_examples * (1.0 + np.dot(feature_diffs, params)))

log_lik = np.sum(np.log2(probs))
best_log_lik = -num_examples*np.log2(num_examples)
return params, probs, log_lik, best_log_lik, n_out_of_domain, log_grad_norm



G.2. Exponential Tilting Iteration

def exp_tilt_iteration(feature_diffs, params):
"""Calculate Newton step for exponential tilting.

Args:
feature_diffs: array of m(x_i; c).
params: current parameters.

Returns:
params: parameters after a Newton step.
probs: updated per-sample probabilities.
ent: updated entropy.
best_ent: theoretically optimal entropy in bits.
n_out_of_domain: number of points <0.0 or >1.0.
log_grad_norm: norm of the gradient (to check optimization).

"""
num_examples = feature_diffs.shape[0]
w_exp_tilt = np.exp(np.dot(feature_diffs, params)) / num_examples
sc_f_diff = feature_diffs * w_exp_tilt[:, np.newaxis]

hess = np.dot(sc_f_diff.T, feature_diffs)
log_grad = np.sum(sc_f_diff, axis=0)
newton_step = np.linalg.solve(hess, log_grad)
log_grad_norm = np.linalg.norm(log_grad)

params -= 0.5 * newton_step
exp_weights = np.exp(np.dot(feature_diffs, params))
probs = exp_weights / np.sum(exp_weights)
n_out_of_domain = 0
ent = entropy(probs, base=2)
best_ent = np.log2(num_examples)
return params, probs, ent, best_ent, n_out_of_domain, log_grad_norm



H. Theoretical Comparison with Precision-
Recall

Precision-Recall (PR) and GEL approach the problem of
evaluating generated samples from two different perspec-
tives. Sajjadi et al. [64] first define precision and recall for
two distributions to quantify how well the generator q “cov-
ers” the support of the data distribution p (recall) and how
often it generates samples which are unlikely under p (pre-
cision). That paper [64] highlights the fact that for samples
and data points in the intersection of the supports of p and
q, there is a fundamental ambiguity: should the difference
between p and q be attributed to precision or recall? The
authors thus propose to use a continuum of precision-recall
values (or precision-recall curve). [42] describes important
weakness of this approach (ambiguity of using a continuum
of value, difficulty to estimate extrema) and argues that the
classical definition of PR is sufficient for the task at hand. In
practice, we do not have access to p and q, only to samples
from them, and so to compute PR we first estimate both
the data and generated sample manifolds in a feature space.
In [42] this is done by placing a hypersphere on each point
so that it reaches its kth nearest neighbor. The resulting PR
estimate is especially sensitive to the value of k and to the
number of samples used, in particular a larger value of k
leads to high values for both precision and recall.

GEL, on the other hand, is a nonparametrical statistical
approach and as such is designed to work directly with sam-
ples. In its one-sample version, it attaches a cost to each data
point, quantifying how much each point contributes to the
mismatch between the data and model distribution. In its
two-sided version it also takes into account the symmetric
situation, attaching a cost to each model sample. Instead
of looking at precision and recall, GEL identifies which
samples from the model are not in the data distribution and
which data points are not in the model. As such GEL does
not require solving the complex intermediate problem of
manifold estimation which introduces its own estimation
error, hyperparameters, and computational cost.
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