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Abstract

In this supplementary material, we provide additional
details and results to complement and strengthen the find-
ings of the main paper and to make reproducibility as easy
as possible. A detailed derivation of how to efficiently im-
plement DSP’s loss term can be found in Section 1. Sec-
tion 2 gives an explanation for the choice of the segmen-
tation architecture as used for the experiments in the main
paper and contains details about the configurations. In Sec-
tion 3, we provide additional information on dataset sizes
and construction of weak labels. Section 4 contains addi-
tional details with respect to baseline methods and their ab-
lations. Quantitative results as numerical values are shown
in Section 5, thereby complementing the graphical result
representations given in the main paper. In addition, Sec-
tion 6 contains additional qualitative results, with a specific
focus on failure cases and a visualization of DSP’s embed-
ding space during training. Finally, we give in Section 7
answers to several questions about DSP.

1. Details on efficiently implementing DSP’s
loss term

As shown in the main paper, DSP’s loss term LDSP is
built on the idea of decoupled contrastive learning by Yeh et
al. [22]. This is especially attractive for segmentation tasks,
i.e., with large amounts of pixels, as it removes the necessity
to compute different negatives for each positive case. In the
following, we will give a more detailed description of how
the final loss term as shown in Equation (9) of the main
paper can be implemented efficiently (as hinted on in the
last part of section 3.5 of the main paper).

Let us start with the loss term LDSP as in Equation (9)

of the main paper:

LDSP =
∑

l∈{m,b,p,im}

λl

C∑
c=1

∑
fi∈Ωl

c

L(fi, c) . (S.1)

Let us look at the last sum in Equation (S.1). For a spe-
cific class c and an annotation type l, the last sum can be
expressed as follows given the definition of L(fi, c) from
Equation (6) of the main paper:

∑
fi∈Ωl

c

L(fi, c) =
∑

fi∈Ωl
c

− log
exp (sc(fi, Pc)/τ)

Zi,c
. (S.2)

Recall that Zi,c, as defined in Equation (8) of the main
paper is the denominator of our decoupled contrastive term:

Zi,c =

B·H·W∑
j=1

C∑
k=1,c/∈Aj∨k ̸=c

exp (sk(fj , Pk)/τ) . (S.3)

As a reminder from section 3.4: the requirement c /∈ Aj

OR k ̸= c as given under the second sum is motivated by
the design that all associations between pixel-embeddings
and prototypes shall be counted as negatives either when
i) k ̸= c (i.e. a negative association can safely be assumed)
or ii) for the case of k = c but then only if c /∈ Aj (i.e.
the class c is not possible under the available annotation for
pixel j).

Due to the these two requirements, Zi,c and hence the
denominator in Eq. (S.2) becomes independent of fi. Thus,
we write Zc for short. Simultaneously, we apply the loga-
rithmic division law and simplify the right part of Eq. (S.2)



to obtain:∑
fi∈Ωl

c

L(fi, c) =
∑

fi∈Ωl
c

−(log exp (sc(fi, Pc)/τ)− logZc)

(S.4)

=
∑

fi∈Ωl
c

− (sc(fi, Pc)/τ − logZc) .

(S.5)

At this point, with the independence of Zc from fi, we could
simply scale the denominator Zc with the number of posi-
tives in the set Ωl

c to bring it in front of the summation:∑
fi∈Ωl

c

L(fi, c) = |Ωl
c| · logZc −

∑
fi∈Ωl

c

sc(fi, Pc)/τ .

(S.6)

However, we found that scaling the negatives Zc by a
value > 1 creates large loss magnitudes which were experi-
mentally hard to weight. Hence, we instead re-scale the loss
as given in Eq. (S.6) by dividing by |Ωl

c|:

L(c)
·
= logZc −

1

|Ωl
c|

·
∑

fi∈Ωl
c

sc(fi, Pc)/τ . (S.7)

Putting everything together, we obtain the final implemen-
tation L⋆

DSP for LDSP as used in our code as follows:

L⋆
DSP =

∑
l∈{m,b,p,im}

λl

C∑
c=1

L(c) · δ(|Ωl
c| ≠ 0) , (S.8)

where the delta function δ(·) prevents from division by zero
in the case of |Ωl

c| = 0 (i.e. when class c does not occur
in the batch). This loss is used for weakly- and strongly
augmented inputs.

2. A note on architecture choices
In order to obtain comparable results, all methods in our

evaluation share the same segmentation architecture. The
results as presented in the main paper have all been ob-
tained with a Unet [16]. To be more precise, we lever-
age a Unet with successive feature-map channel sizes of
{64, 128, 256, 512, 1024} in the encoder and the corre-
sponding reverse channel sizes in the decoder. This gives a
versatile and yet efficient network with ∼ 22 million train-
able parameters.

So – why Unets and no recent architectures that give
state-of-the-art results on domains like Cityscapes [4]? In
preliminary experiments, we indeed explored recent trans-
former architectures. Specifically, we analyzed some base-
line methods on Segformers by Xie et al. [21] and on Swin-
Unets by Cao et al. [2]. However, we observed unstable
trainings and extremely poor segmentation results, both in
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Figure 1. Results for segmentation transformers trained from
scratch with full supervision on HELA-2.

cases when trained from scratch as well as when initialized
with ADE-20K [24] pre-trained weights. Qualitative results
of failed segmentations with these architectures are shown
in Figure 1. As can be seen, the segmentation results which
we were able to obtain by training these architectures are
clearly not acceptable. We assume that one main reason
for insufficient applicability of Segformers and Swin-Unets
in the task at hand is the lack of pre-trained weights for
the domain of electron microscopy imagery. At the same
time, we expect that weights obtained from the natural do-
main do not allow these architectures to transfer sufficiently
well to application domains which are starkly different from
natural images. Furthermore, we observed training insta-
bility of these architectures with respect to hyperparame-
ters and schedulers of optimization parameters, e.g. learning
rate warm starts and learning rate decay, which Unets are
known to be robust against. Finally, especially Segformers
might be negatively impacted from the padding of images
for same-sized images in the batch.

Given the previous considerations, and given the require-
ments for a statistically sound evaluation which requires to
robustly train > 1500 models for our experiments, we de-
cided for Unets. This choice is further supported in many
non object-centric, expert-driven domains, especially in the
medical area [7, 9, 10]. At the same time, we expect that
improvements like pre-training on in-domain data [13] will
enable segmentation transformers also for this domain. For
the future, we are especially interested to see how trans-
formers perform when being adapted to and trained with
Decoupled Semantic Prototype.

3. Additional information about the datasets

As described in the main paper, we conducted exper-
iments on a total of four cell organelle datasets from



Class name HELA-2 HELA-3 MACROPHAGE-2 JURKAT-1

Extracellular Space ✓ ✓ ✓ ✓
Plasma Membrane ✓ ✓ ✓
Mitochondria ✓ ✓ ✓
Vesicle ✓ ✓ ✓ ✓
MVB ✓ ✓ ✓ ✓
Lysosome ✓ ✓
Endoplasmic Reticulum ✓ ✓ ✓ ✓
Nucleus ✓ ✓ ✓ ✓
Nucelear Envelope ✓ ✓
Microtubule ✓ ✓ ✓
Cytosol ✓ ✓ ✓ ✓

HELA-2 HELA-3 MACROPHAGE-2 JURKAT-1

Figure 2. Top: Organelle classes which are present in at least three sub-volumes in the different datasets of Heinrich et al. [7] for
train/validation/test cross-validation are indicated with checkmarks. Bottom: Example images from the different cell organelle electron
microscopy datasets used in the main paper.

the OPENORGANELLE data as outlined in Heinrich et
al. [7]. In low annotation scenarios, rigorous cross-
validation is necessary to get robust insight into method
performances. Therefore, we performed cross-sub-volume
cross-validation, i.e. we split the set of annotated sub-
volumes of the datasets into train/validation/test sets mul-
tiple times. As mentioned in the main paper, this was done
10 times for HELA-2 and 5 times for the remaining datasets.

For creating these splits, we obviously can only include
classes that occur in at least three annotated sub-volumes to
distribute them among train, validation, and test. Directly
applying this constraint to the four cell organelle datasets
would leave us with little annotated data. Therefore, as
mentioned in the main paper, we merged the original 37
classes into 17 merged classes. For merging classes, we
followed the the organelle class hierarchy provided in the
code of the original publication1. In the top part of Fig. 2,
we list the subset of classes from these 17 merged classes
that satisfy the occurence requirement in three sub-volumes
on the different datasets.

To get an intuition about the difficulty, properties, and
differences of these cell organelle datasets, we show in the

1https : / / github . com / saalfeldlab / CNNectome /
blob / 7c5250edf2ba8ce43127c457b755ea30721f638f /
CNNectome/utils/hierarchy.py

lower part of Fig. 2 example images from all FIB-SEM
datasets used in the experiments. As can clearly be seen,
the different datasets show a large variance in appearance
as well as aspect ratios (different aspect ratios of labeled
regions also occur within datasets).

3.1. Dataset sizes

As we outline in the main paper, we performed cross-
sub-volume cross-validation either 10 or 5 times. Here,
we report the average number of images in the training-,
validation-, and testing sets for the four datasets:

• HELA-2: 2321 training images, 924 validation images,
and 930 testing images

• HELA-3: 1634 training images, 731 validation images,
and 791 testing images

• MACROPHAGE-2: 1482 training images, 685 valida-
tion images, and 740 testing images

• JURKAT-1: 1525 training images, 745 validation im-
ages, and 742 testing images

https://github.com/saalfeldlab/CNNectome/blob/7c5250edf2ba8ce43127c457b755ea30721f638f/CNNectome/utils/hierarchy.py
https://github.com/saalfeldlab/CNNectome/blob/7c5250edf2ba8ce43127c457b755ea30721f638f/CNNectome/utils/hierarchy.py
https://github.com/saalfeldlab/CNNectome/blob/7c5250edf2ba8ce43127c457b755ea30721f638f/CNNectome/utils/hierarchy.py


3.2. How to obtain weak annotations from pixel-
wise masks

The OPENORGANELLE dataset by Heinrich et al. [7]
comes with pixel-wise annotations. From these, we also de-
rived weak annotations to conduct semi-weakly supervised
experiments with diverse annotation types. For creating
image-level labels, we simply extracted the unique classes
that occur in each pixel-wise mask. To extract bounding
boxes, we computed the connected components of each
mask, extracted bounding boxes, and assigned the class
from the corresponding mask. For creating point annota-
tions from masks, we finally would have several choices.
We draw inspiration from the way humans generally point
at objects, i.e. clicking on the medial axis [6] or in the cen-
ter of regions [3]. Hence, we computed the medoids of the
connected components of the mask and obtained one point
annotation from each medoid location, associated with the
class label of the corresponding mask.

4. Additional details for baseline methods and
their ablation

Batch construction During training, we ensured for the
creation of mini-batches that on average all annotation types
used in a training scenario are equally present. This “strat-
ified sampling” was applied for all methods. Thereby,
losses based on specific annotation types are computed on a
roughly regular schedule rather than after an irregular num-
ber of iterations. This is especially useful when the training
scenario has severely unbalanced portions of pixel-wise and
weak annotations (e.g. at ACR = 64). To obtain this, we
oversampled images from less frequent annotation types,
similar to the commonly done oversampling of the set of
labeled images for semi-supervised segmentation [15, 17].
Pseudo-label [12] We implemented an online version of
pseudo-labeling, i.e. computing the labeles for un- or
weakly labeled images on the fly while training the seg-
mentation network. Although this is in contrast to pre-
computing pseudo-labels and then continuing training with
fixed pseudo-labels, we decide for the online version as all
other compared methods also work in an online setting.
FixMatch [17] The original FixMatch approach was de-
signed for image classification and computes pseudo-labels
with a given threshold on the predictions. Thereby, it dis-
regards pseudo-labeled images that have a lower prediction
score than this threshold. We investigated the effect of such
a threshold when being applied in the segmentation scenario
and report results in the left part of Table 1. Surprisingly
simply not applying a threshold lead to the best results.
Furthermore, FixMatch leverages strong augmentations, in-
cluding CutOut [5] which randomly sets image regions of
size 32 × 32 in the input image to black. We analyzed the
effect of how often to apply CutOut (i.e. for how often to

Figure 3. Class-wise geodesic distance maps based on point an-
notations (marked in red and enlarged for visibility). In the lower
right, the input image from HELA-2 is displayed.

successively apply CutOut with a probability of 0.5). Re-
sults of this ablation study are given in Table 1. We see that
the best result is obtained with applying Cutout up to nine
times. We also use these strong augmentations for DSP and
Con2R [15].

threshold DICE
0.0 51.7± 3.6
0.1 51.3± 4.2
0.2 51.2± 3.9
0.3 51.4± 3.5
0.4 51.4± 4.2
0.5 51.0± 4.0
0.6 51.6± 3.9
0.7 51.0± 3.7
0.8 51.0± 3.6
0.9 50.8± 3.6

0.95 50.5± 3.4

# CutOut DICE
0 48.5± 3.7
1 49.0± 4.1
2 50.0± 3.1
3 50.3± 3.6
4 50.4± 4.0
5 50.4± 4.0
6 50.4± 4.0
7 50.8± 3.5
8 50.8± 4.2
9 51.7± 3.6

10 51.1± 3.4

Table 1. Ablation study for the baseline method FixMatch by
Sohn et al. [17] for a standard semi-supervised learning sce-
nario. Validation accuracy measured as DICE score on HELA-
2, ACR = 8. Left: Varying the pseudo-label threshold in Fix-
Match. Right: Varying the maximum number of applying CutOut
as strong augmentation.

Classification branch For the classification branch archi-
tecture, which is trained on top of the Unet architecture [16],
we followed the original publication from Mlynarski et
al. [14] as closely as possible. To gauge with the different
image size used in the original implementation, we merely
needed to add four more convolutions with ReLU activa-
tion after the mean pooling operation and single convolu-
tion to end up at the desired size of 11 × 11. From there,
we apply the exact same classification branch architecture
consisting of linear layers, ReLU activations, and residual
connection.

We also investigated whether the method of Bae et al. [1]



Method I B P ACR = 1 ACR = 2 ACR = 4 ACR = 8 ACR = 16 ACR = 32 ACR = 64

UNet – – – 50.1± 4.6 50.3± 5.6 48.2± 4.9 43.6± 7.0 34.2± 6.6 24.6± 3.7 20.2± 6.5

CLS Branch [14] ✓ – – 50.4± 5.5 50.3± 5.1 50.4± 4.6 47.3± 5.8 43.8± 6.4 34.6± 7.3 26.1± 8.2

Box Proj. [18] – ✓ – 48.4± 4.9 49.7± 5.2 49.9± 4.6 47.8± 5.9 43.0± 5.7 33.5± 6.5 26.7± 8.5

Euclidean branch – – ✓ 51.3± 4.6 50.9± 5.2 50.4± 5.3 48.7± 6.1 41.4± 6.9 31.0± 5.9 19.9± 7.5

Geodesic branch – – ✓ 50.4± 4.2 49.6± 5.4 50.4± 4.0 48.6± 6.0 42.2± 6.0 33.5± 5.8 23.6± 6.1

Pseudo-label [12]
✓ – – 50.1± 4.6 50.5± 5.5 50.2± 4.9 49.3± 5.4 46.1± 6.2 35.8± 6.9 27.9± 6.8
– ✓ – 50.1± 4.6 50.7± 5.1 50.6± 5.1 48.1± 4.7 45.2± 6.2 34.3± 6.2 27.9± 6.0
– – ✓ 50.1± 4.6 50.9± 5.0 50.1± 5.0 48.5± 5.1 45.8± 5.1 35.1± 6.7 26.9± 6.3

Con2R [15]
✓ – – 51.6± 4.3 52.4± 4.9 51.4± 5.2 48.9± 7.1 43.4± 5.7 32.6± 5.3 22.1± 8.8
– ✓ – 51.6± 4.3 53.0± 5.0 51.6± 5.2 49.3± 5.6 43.8± 7.0 33.6± 5.9 22.1± 10.1
– – ✓ 51.6± 4.3 52.4± 4.6 51.5± 5.4 49.2± 6.4 43.3± 7.5 32.8± 5.4 22.1± 8.8

FixMatch [17]

– – – 52.9± 3.9 53.5± 4.5 53.6± 4.1 53.0± 5.1 48.0± 6.7 37.8± 7.9 22.4± 11.7
✓ – – 52.9± 3.9 53.8± 4.5 53.7± 4.7 52.4± 4.6 49.1± 6.9 42.6± 8.2 33.0± 10.5
– ✓ – 52.9± 3.9 53.3± 4.0 52.8± 4.7 52.7± 4.4 51.2± 5.7 43.9± 10.5 39.4± 8.9
– – ✓ 52.9± 3.9 53.7± 4.5 53.5± 4.6 52.1± 4.7 49.5± 6.1 42.5± 9.1 32.6± 10.8

DSP (Ours)
✓ – – 53.4± 3.6 53.8± 5.0 53.5± 4.5 52.0± 5.6 49.8± 6.3 42.4± 8.2 32.5± 10.4
– ✓ – 53.4± 3.6 53.7± 4.8 53.0± 3.6 52.9± 5.0 50.9± 5.7 47.7± 7.0 44.2± 10.1
– – ✓ 53.4± 3.6 53.7± 4.4 53.5± 4.9 53.4± 4.8 52.3± 4.6 47.7± 8.2 37.7± 12.5

Table 2. Segmentation accuracy of different methods at increasing pixel-wise annotation compression rates, measured as mean and standard
deviation in DICE. Results are obtained from 10 splits. Random baseline: 5.1± 0.3 DICE. Class-prior baseline: 6.1± 0.6 DICE.

can give additional benefits, i.e. if restricting the segmenta-
tion prediction by the classifier’s output during inference
can improve the result. However, we did not find better re-
sults in ablation studies. We assume that the initial observa-
tion by Bae et al. specifically holds for exceptionally good
classifiers as available in object-centric image domains, but
does not necessarily generalize to cell organelle images.
Euclidean/Geodesic point branch This baseline leverages
an auxiliary output-head which regresses distance maps that
are generated via point labels. For each class, a distance
map is computed based on point annotations, i.e. the small-
est distance from every pixel to all point annotations of
this class is computed. We implement these distance maps
for the Euclidean distance and the Geodesic distance. The
choice of Geodesic distance is inspired by point- or click
annotations. These are frequently used for medical inter-
active segmentation [20] and weakly supervised medical
segmentation [23], where the Geodesic distance can be ex-
ploited. Regressing distance maps is also commonly ex-
plored in medical and cell datasets [8, 11]. We visualize an
example of such a point-based geodesic map in Figure 3.
During training, such Geodesic maps serve as targets to ef-
ficiently exploit point annotations and to supply the model
with more structural information than singular points alone
could offer.
Box loss We integrated the bounding box-based loss of

Tian et al. [18] for the scenario with pixel-wise annotations
and boxes and directly applied it on top of the segmentation
output-head for the boxes that are supplied in this scenario.

5. Quantitative results in numerical form
In the main paper, we provided all results as graphical

representations by plotting segmentation accuracy against
increasing ACRs. The graphical representation aimed at
making the progression of accuracy easier to view and bet-
ter to interpret. For completeness, we provide here underly-
ing numerical results (rounded to one decimal) for all pre-
sented experiments.

5.1. Numerical results for all methods

The HELA-2 results for annotation type pairs are dis-
played in Tab. 2 with checkmarks indicating the weak anno-
tation type used alongside masks. For models trained with
all supervision types mixed, results are shown in Tab. 3 for
HELA-2, HELA-3, MACROPHAGE-2, and JURKAT-1.

5.2. The benefit of pseudo-label filtering

We further investigated the effect of pseudo-label filter-
ing in the scenario of semi-weakly supervised segmenta-
tion. I.e., does the filtering of pseudo-labels based on avail-
able weak annotation give benefits for training? For this,



Method U I B P ACR = 1 ACR = 2 ACR = 4 ACR = 8 ACR = 16 ACR = 32 ACR = 64

HELA-2
UNet – – – – 50.1± 4.6 50.3± 5.6 48.2± 4.9 43.6± 7.0 34.2± 6.6 24.6± 3.7 20.2± 6.5

FixMatch [17] ✓ ✓ ✓ ✓ 52.9± 3.9 53.8 ± 4.4 53.0± 4.2 52.9± 4.7 50.2± 6.3 46.0± 7.4 36.7± 11.6

DSP (Ours) ✓ ✓ ✓ ✓ 53.4 ± 3.6 53.7± 4.5 54.0 ± 4.0 54.2 ± 4.6 52.1 ± 5.6 51.6 ± 6.0 49.5 ± 6.1

HELA-3
UNet – – – – 47.3± 7.2 45.6± 7.4 44.8± 8.4 41.6± 8.5 42.0± 6.5 34.5± 6.4 28.8± 9.4

FixMatch [17] ✓ ✓ ✓ ✓ 54.2± 3.4 54.5 ± 3.7 55.9 ± 2.8 55.7 ± 2.7 54.6± 3.0 48.7± 4.1 49.4± 5.4

DSP (Ours) ✓ ✓ ✓ ✓ 54.5 ± 3.9 53.9± 5.0 54.6± 3.0 55.5± 2.1 56.2 ± 1.7 53.3 ± 5.0 52.4 ± 4.2

MACROPHAGE-2
UNet – – – – 30.7± 5.5 29.2± 7.7 22.1± 4.2 19.0± 6.3 10.5± 7.5 5.7± 2.7 9.3± 6.9

FixMatch [17] ✓ ✓ ✓ ✓ 44.3± 2.1 42.5± 7.2 40.1± 6.7 23.7± 8.4 12.2± 6.8 11.7± 8.4 13.3± 18.8

DSP (Ours) ✓ ✓ ✓ ✓ 45.0 ± 2.6 43.6 ± 8.5 43.0 ± 8.9 31.3 ± 10.4 21.1 ± 8.9 14.5 ± 11.4 15.3 ± 14.8

JURKAT-1
UNet – – – – 28.4± 8.2 26.4± 6.3 21.1± 5.1 14.2± 7.1 5.0± 2.0 8.2± 3.4 5.1± 1.9

FixMatch [17] ✓ ✓ ✓ ✓ 32.7± 9.6 32.6 ± 8.6 32.3 ± 9.5 15.7± 7.1 5.7± 3.5 6.3± 3.9 6.5 ± 2.7
DSP (Ours) ✓ ✓ ✓ ✓ 32.9 ± 9.1 32.4± 8.3 29.5± 5.3 18.0 ± 7.6 7.8 ± 4.1 10.5 ± 5.9 6.3± 3.6

Table 3. Segmentation accuracy of different methods at increasing pixel-wise annotation compression rates with weak labels of all types
distributed uniformly, measured as mean and standard deviation in DICE. Results are obtained from 5 splits (10 for HELA-2).

we trained the best semi-supervised learning baseline Fix-
Match [17] with and without pseudo-label filtering. Results
can be found in Tab. 2, first row in FixMatch results for
without pseudo-label filtering, and remaining three rows in
FixMatch results with pseudo-label filtering. We observe
that in the low ACR scenarios, pseudo-label filtering does
not give additional benefits as only few weakly labeled ex-
amples are integrated. However, especially when training
with few pixel-wise masks, i.e. ACRs ∈ {16, 32, 64} we see
a tremendous positive effect. Hence, we conclude that Fix-
Match coupled with pseudo-label filtering is a simple and
strong semi-weakly supervised baseline.

6. Supplementary qualitative results

6.1. Segmentation results

In the top three rows of Fig. 4, we provide additional
qualitative results from DSP on an image from the HELA-
2 dataset. As can be seen, DSP is able to uncover small
organelle structures and start capturing their semantics even
with very few pixel-wise annotated masks in training and a
mix of annotation types.

In the middle four rows of Figure 4, we show the quali-
tative segmentation results of DSP when being trained with
different combinations of annotation types (all scenarios
from the main paper). We find two observations worth to
note. First, we see point annotations allow to quickly learn

to find central regions which lie on the organelles. Second,
we also see that training with bounding boxes leads to mod-
els which slightly oversegment the organelles. These ob-
servations combined can serve as explanation why the com-
bination of these annotation types (in the mixed scenario)
works better than each type individaully.

Finally, we provide a failure case where DSP leads to an
insufficient segmentation in the last row of Fig. 4. As can
be seen, DSP is not able to clearly delineate the nuclear en-
velope (dark blue) and fails in correctly assigning the class
microtubule (purple). We expect these errors to originate
from a too strong learned shape bias for the microtubules.

6.2. Evolution of Decoupled Semantic Prototypes

Finally, we were interested in a deeper understanding
about the semantic prototype vectors of DSP. To this end,
we plotted t-SNE projections [19] of class-wise prototypes
Pc alongside several few pixel-embeddings fi after the
10th, 50th and 100th epoch. These are shown in Fig. 5.
It can be seen that over the time of training, clusters are
formed and the prototypes delimit which semantics occupy
what regions of the embedding space.

7. FAQ – Good questions and honest answers
During the reviewing process and in internal discussions,

several valid and insightful questions have been raised. We
list some of them together with honest answers here, as we
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Figure 4. From left to right: test image, ground-truth segmentation of the organelle structures, and predicted segmentations from models
trained with diverse annotation types and decreasing number of annotated pixel-wise masks on HELA-2. Top three rows: Models trained in
the mixed annotation type scenario as outlined in the main paper. Middle four rows: Our method Decoupled Semantic Prototypes trained
with different combinations of annotation types to show their effects. Bottom row: Failure case of DSP in the mixed scenario



Figure 5. Three plots of the learned class-wise prototypes (colored stars) and randomly selected pixel-embeddings (gray crosses) throughout
the training process (left to right: after 10, 50 and 100 epochs of training). Prototypes and embeddings are projected via t-SNE.

believe that they are relevant to a broader audience.
Q: Does LDSP use unlabeled images? LDSP is
mainly based on annotations, specifically it unifies arbitrary
annotation-types. Still, from unlabeled images, prototype
associations that do not belong to the positive class can be
derived. You can see this by closely observing the final loss
LDSP in Eq. (9): although the sum goes only over annota-
tion types l ∈ {m, b, p, im}, also unlabeled images are con-
tributing via negative associations in L(fi, c) Specifically,
are included in included in computing Zi,c (Eq. (8): criteria
k ̸= c is fulfilled). Furthermore, unlabeled images are also
used in the filtered pseudo-labels via LPLF .
Q: What is the difference of base model with a linear
projection + cross-entropy compared to your DSP ar-
chitecture? Our proposed prototypes are a matrix of shape
D × C × |PC |. From that point of view, a plain projec-
tion head of size D × C × |PC | can indeed be used to pro-
duce 1×C|PC | scores. However, while standard projection
heads rely on dot product, we exploit the cosine distance in
Eq. (1) which uses normalized vectors to bound the simi-
larity scores (as typically done in contrastive learning [22]).
Furthermore, a common projection head design would di-
rectly predict C class scores, rather than predicting C|PC |
scores followed by averaging the |PC | values per class as
done in DSP.

With respect to results: on HELA-2, all splits, ACR=8,
a plain Unet achieves 43.6 ± 7.0% (this is the special case
of projection head and |PC | = 1). The implementation of
a projection head with |PC | scores per class, class-wise av-
eraging, and trained with LCE results in 45.1± 6.6%. The
same projection head with cosine similarity instead of dot
product but still only trained with LCE leads to 48.2±5.7%.
Finally, DSP is able to integrate all annotation-types via
LDSP and reaches 54.2± 4.6%.
Q: Isn’t the computation for training quite expensive?
In fact, all approaches in our experiments had access to
the same resources available to us and are therefore com-

parable. Furthermore, since hardware is scalable via a
higher budget, we investigated the limited resource ‘expert-
availability’ which can’t be scaled easily.
Q: Would post processing give better performance? Ab-
solutely, yes. We clearly acknowledge that all approaches
would benefit from smart post-processing rules. Here, we
focused on a plain comparison of underlying training algo-
rithms.
Q: Since ACR does not reflect varying efforts for weak
annotations, is ACR a good measure for expert centric
scenarios? We think it is! The idea of expert-centrism is
that a segmentation training is not restricted to masks but
can handle any preference of annotation combinations (as
DSP does).
Q: Why don’t you additionally compare with purely
weakly supervised methods? A comparison to weakly su-
pervised methods would give nice lower bounds but would
not be a fair comparison as they don’t consider mask anno-
tations.
Q: Why don’t you additionally compare on standard
computer vision datasets? We agree: more datasets are al-
ways better (and we’re curious too!). Yet, training the over
1600 networks on the four datasets was already a consider-
able effort given our available compute hardware.
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