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A. Introduction
In this document, we include additional details and re-

sults omitted from the main paper due to page limits. Sec. B
and Sec. C cover details of the TRACE and PACER models,
respectively. Sec. D provides additional details of the exper-
iments presented in the main paper, while Sec. E gives addi-
tional results to supplement those in the main paper. Sec. F
discusses limitations and future work in more detail.

Extensive video results are included on the provided
project page. We highly encourage readers to view
them to better understand our method’s capabilities.

B. TRACE Details
In this section, we provide details on the TRAjectory

Diffusion Model for Controllable PEdestrians (TRACE)
presented in Sec 3.1 of the main paper.

B.1. Model Details

B.1.1 Denoising-Diffusion Formulation

Input Representations. In practice, the history trajecto-
ries of the ego pedestrian xego = [st−Tp

. . . st] and N
neighboring pedestrians Xneigh = {xi}Ni=1 given as input to
the diffusion model include more than just positions, head-
ing, and speed. In particular, each past state is

s = [x y hx hy v l w p] ∈ R8

where (x, y) is the 2D position, (hx, hy) is the 2D heading
vector computed from the heading angle θ, v is the speed,
(l, w) is the 2D bounding box dimensions of the person, and
p ∈ {0, 1} indicates whether the person is present (visible)
at that timestep or not (e.g., due to occlusions in real-world
data). If a person is not visible at some step, i.e., p = 0, then
the full state vector is zeroed out before being given to the
diffusion model. All trajectories are transformed into the
local frame of the ego pedestrian at the current time step.

∗equal contribution

The rasterized map input M ∈ RH×W×C is in bird’s-
eye view, and is cropped around the ego pedestrian and
transformed into their local frame. For all experiments
H = W = 224 px at a resolution of 12 px/m. The map
is cropped such that 14 m to the front, left, and right of the
ego are visible, and ∼4.6 m behind. Each channel of M
is a binary map with 1 indicating the presence of some se-
mantic property. For example, in the ORCA dataset, there
are only two layers – one for walkable area and one for ob-
stacles. In nuScenes, there are seven layers representing
lane, road segment, drivable area, road divider, lane divider,
crosswalk, and sidewalk. Notice that the map for TRACE
does not contain fine-grained height information as in the
map for PACER. As such, TRACE is in charge of high-level
obstacle avoidance while PACER factors in both obstacles
and terrain.

Denoising with Dynamics. As discussed in the main pa-
per, during denoising the future state trajectory is always a
result of actions, i.e. diffusion/denoising are on τ a, similar
to [21]. In detail, given an input noisy action sequence τ ka
the denoising process is as follows: (1) compute the input
state sequence τ ks = f(st, τ

k
a) using the dynamics model

f , (2) pass the full input trajectory τ k = [τ ks ; τ
k
a] to the de-

noising model to predict the clean action trajectory τ̂ 0
a, (3)

compute the output state trajectory τ̂ 0
s = f(st, τ̂

0
a), (4) if

training, compute the loss in Eqn 3 of the main paper on the
full output clean trajectory τ̂ 0 = [τ̂ 0

s; τ̂
0
a].

We use a unicycle dynamics model for f [1]. Though hu-
mans are in theory more agile than the unicycle model, we
find it regularizes predictions to be generally smooth, which
is how pedestrians usually move and is amenable to being
followed by an animation model. Since our model requires
actions as input, we compute these from the state-only input
data through a simple inverse dynamics procedure.

Parameterization. At each denoising step k, TRACE must
predict the mean of the distribution used to sample the
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Figure 1. Architecture of a single layer of denoising 1D U-Net.

slightly less noisy trajectory for step k − 1:

pϕ(τ
k−1 | τ k, C) := N (τ k−1;µϕ(τ

k, k, C),Σk). (1)

There are three common ways to parameterize this predic-
tion (we recommend [9] for a full background on these for-
mulations): (1) directly output µ from the network, (2) out-
put the denoised clean trajectory τ 0, or (3) output the noise
ϵ used to corrupt the clean trajectory. TRACE uses (2), but
the formulations are equivalent. In particular, we can com-
pute µ from τ k and τ 0 using

µ(τ 0, τ k) :=

√
ᾱk−1βk
1− ᾱk

τ 0 +

√
αk (1− ᾱk−1)

1− ᾱk
τ k (2)

where βk is the variance from the schedule (we follow [4,
9] and use a cosine schedule), αk := 1 − βk, and ᾱk :=∏k
j=0 αj . Therefore, we can plug the output from TRACE

τ̂ 0 along with the noisy input τ k into Eq. (2) to get the
desired next step mean µϕ. We can also use the fact that τ 0

is corrupted by

τ k =
√
ᾱkτ

0 +
√
1− ᾱkϵ (3)

where ϵ ∼ N (0, I) to compute ϵ from the output of
TRACE:

ϵ =
τ k −

√
ᾱkτ

0

√
1− ᾱk

. (4)

This allows the use of the classifier-free sampling strategy
defined in Eqn 4 of the main paper, which requires mixing
ϵ outputs from the conditional and unconditional models.

B.1.2 Architecture

The denoising architecture is shown in Fig. 2 of the main
paper. At each denoising step k, the step index is processed

with a positional embedding followed by a small MLP that
gives a 32-dim feature. The map feature extractor uses the
convolutional backbone of ResNet-18 [3] as the encoder
followed by a 2D U-Net [14] decoder that leverages skip
connections to layers in the encoder. For all experiments,
the output feature grid Ψ is then 56× 56× 32.

The ego xego and neighbor Xneigh history encoders op-
erate on past trajectories ∈ RTp×8 that are flattened to be
a single input vector. The ego and all neighbor trajectories
are processed by an MLP with 4 hidden layers giving a fea-
ture vector of size 128. A different MLP is learned for ego
and neighbor trajectories (i.e. all neighbors are processed
by the same MLP, which is different from the ego MLP).
Neighbor trajectory features are max-pooled to get a sin-
gle interaction feature. The resulting ego and interaction
features are finally jointly processed by another MLP with
4 hidden layers, giving a 256-dim feature summarizing the
past trajectory context.

Note that the processing of input conditioning described
thus far is only necessary to do once before starting the de-
noising process. Only the denoising 1D U-Net needs to be
run at every step. At step k of denoising, the 2D position
at each timestep t+i of the current noisy input trajectory
τ k is queried in the map feature grid to obtain a feature
gt+i = Ψ(xt+i, yt+i) ∈ R32. This query is done through
bilinear interpolation of map features at the corresponding
point. Over all timesteps, these form a feature trajectory
G = [gt+1 . . .gt+Tf

] that is concatenated along the chan-
nel dimension with τ k ∈ RTf×6 (containing both actions
and states) to get the full trajectory input to the denoising
U-Net [τ k;G] ∈ RTf×38. Each layer of the U-Net also re-
ceives the concatenation of the past trajectory context and
denoising step feature.

The architecture of a single U-Net layer is shown in
Fig. 1. The input trajectory at each layer is first processed by
a 1D convolution. The input trajectory history and step in-
dex feature are projected to the same feature size, broadcast
over the temporal dimension, and then added to the interme-
diate trajectory features. Another convolution is performed
before adding to the input trajectory in a residual fashion.
In the encoding part of the U-Net shown in Fig. 2 of the
main paper, a 2× downsampling over the temporal dimen-
sion is performed between layers, while a 2× upsampling is
done in the decoding part. The encoder is three layers with
output channels being 64, 128, and 256-dim.

B.1.3 Training Details

TRACE uses K = 100 denoising steps in both training
and testing. Training uses a fixed learning rate of 2e-4
with the Adam optimizer [5] and runs for 40k iterations.
TRACE trains on a 32 GB NVIDIA V100 GPU and takes
∼2 days on the ORCA dataset and ∼3 days on the mixed
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Figure 2. Illustrations of various guidance objectives. See text for
details.

nuScenes+ETH/UCY data.

During training, the neighbor history and map condition-
ing are randomly dropped out with a 10% probability. Note
that these are dropped independently and that the ego his-
tory is never dropped. In practice, to drop map condition-
ing, all pixels are filled with a 0.5 value; this means that the
model is aware that it “does not know” about the map con-
text, it is not simply fed an empty map with no obstacles (all
zeros). To drop neighbor conditioning, the neighbor history
feature is zeroed out. The same mechanism is used to train
on “mixed” data with varying annotations, e.g., some data
samples have no maps. In this case, a map is still given to
the model but filled with 0.5 value pixels.

B.2. Guidance Details

B.2.1 Scene-Level Guidance

Some guidance objectives are based on multi-agent interac-
tions, e.g., agent collision avoidance and social groups. In
this case, we assume that all pedestrians in a scene can be
denoised simultaneously in a batched fashion. At each de-
noising step, the loss function is evaluated at the current tra-
jectory prediction of all pedestrians and gradients are prop-
agated back to each one for guidance. This can be seen as
sampling a scene-level future rather than a single agent fu-
ture. If we want to sampleM possible scene futures, we can
draw M samples from each agent and assume that the mth
sample from each agent corresponds to the same scene sam-
ple. In other words, we compute the scene-level guidance
by considering only the mth sample from each agent.

This multi-agent guidance slightly complicates the fil-
tering procedure described in Sec. 4 of the main paper
whereby trajectory samples are strategically chosen to min-
imize the guidance loss. In the case of a multi-agent objec-
tive, the trajectory that minimizes the guidance loss for one
agent may not be globally optimal, so it is undesirable to fil-
ter the agents independently. We instead do filtering at the
scene level, similar to how guidance is computed: we com-
pute the summed guidance loss across the mth sample from
all agents and choose the scene-level sample that minimizes
this aggregate loss.

B.2.2 Guidance Objectives

Next, we describe the different test-time guidance objec-
tives (losses) that we have implemented for TRACE. Ob-
jectives operate on the future state trajectory τ s that starts
at timestep t+ 1 and contains state sj at time j.
Agent Avoid and Social Distance. We use the same agent
collision penalty as in TrafficSim [17] and STRIVE [13]
which approximates each agent with disks to efficiently and
differentiably compute a collision loss. For pedestrians, it is
sufficient to use a single disk for each agent (see Fig. 2(a)).
With this approximation, collision detection is fast and the
collision loss is computed based on the extent of disk over-
lap between agents. It is easy to artificially inflate the size
of the disk in order to implement a desired social distance
between pedestrians. Note that this is a multi-agent objec-
tive, so guidance is enforced at the scene level, as previously
discussed.
Obstacle Avoid. We extend the differentiable environment
collision penalty introduced in STRIVE [13] to more ro-
bustly handle collision avoidance and provide more useful
gradients. The core idea is illustrated in Fig. 2(b); for each
timestep where the pedestrian’s bounding box is overlap-
ping with an obstacle, we query a grid of points on the agent
(in our experiments, this is 10×10) and define a loss with
respect to points that are embedded in the obstacle. For each
embedded point, we compute the minimum distance dmin to
a non-embedded point on the agent and define the loss at
that point as L = 1− (dmin/b) where b is the bounding box
diagonal of the agent. Summing the loss at all embedded
points gives the total loss.

A subtle, but very important, implementation detail here
is that the embedded points must be detached (i.e. stop grad)
before computing the loss. Intuitively, embedded points are
treated as points on the obstacle, not the agent. So when
the loss is computed with respect to these points, it gives a
meaningful gradient back to the non-embedded agent points
which propagates back to the agent position and heading.
Local Waypoint at Specific Time. This loss encourages an
agent to be at a specific 2D goal waypoint pg = (x, y) at
a specific time step j that falls within the planning horizon
Tf of the model. It simply encourages the trajectory to be at
that location at the timestep with the loss L = ||sj − pg||2.
Local Waypoint at Any Time. This loss encourages an
agent to be at a specific 2D goal waypoint pg = (x, y) at
any timestep that is within the planning horizon Tf of the
model. The loss is defined as

L =

t+Tf∑
j=t+1

δj · ||sj − pg||22 (5)

δj =
exp(−||sj − pg||)∑
j exp(−||sj − pg||)

. (6)
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Intuitively, it tries to minimize the distance from all points
in the trajectory to the target location, but each timestep is
weighted by δj which is the softmin over the distances of
each step from the waypoint. The δj form a distribution
over trajectory timesteps where states close to the waypoint
will have higher probability and therefore be weighted more
in the loss.

Global Waypoint at Specific Time. This loss encourages
an agent to be at a specific 2D goal waypoint pg = (x, y) at
a specific timestep j that falls beyond the planning horizon
Tf of the model. This is useful during closed-loop operation
in which the agent should eventually reach the point, but at
the current step t is not within the planning horizon. Intu-
itively, the loss encourages making enough progress toward
the waypoint such that when it becomes in range, we can
revert to the Local Waypoint loss and hit the target exactly
at the desired time.

To do this, we would like to ensure that the future tra-
jectory ends in a location such that the pedestrian can travel
in a straight line at a “preferred” speed vpref and get to the
waypoint on time. Formally, the trajectory should be within
a target distance defined as:

dgoal = (j − t) · dt · vpref (7)

where dt is the step size of TRACE output (0.1 sec in our
experiments). Since the pedestrian may not be able to ac-
tually travel a straight line path (e.g. in environments with
obstacles), we incorporate an urgency parameter u ∈ [0, 1]
that encourages getting there earlier and modifies the goal
distance as

d̃goal = dgoal · (1− u). (8)

Then the loss with respect to this target distance is defined
as

L = ReLU(||sTf
− pg||2 − d̃goal) (9)

which penalizes the trajectory if the final state is not within
the goal distance.

Global Waypoint at Any Time. This loss encourages an
agent to be at a specific 2D goal waypoint pg = (x, y) at
any timestep beyond the planning horizon Tf of the model.
To determine whether the goal waypoint is outside the cur-
rent horizon, we check if the agent could progress along a
straight line to the goal at a preferred speed vpref and reach
the waypoint within the planning horizon. If so, the loss
reverts to the Local Waypoint loss.

If the waypoint is indeed beyond the planning horizon,
the loss attempts to progress according to some urgency u ∈
[0, 1]. To do this, we first compute the maximum distance
that could be covered in the current horizon:

dmax = Tf · dt · vpref (10)

and use the urgency to get the goal distance we wish to cover
over the horizon

dgoal = u · dmax. (11)

The loss is computed based on how much progress is made
over the horizon:

L = ReLU(dgoal − dprogress) (12)
dprogress = ||st − pg||2 − ||st+Tf

− pg||2. (13)

Social Groups. This loss encourages groups of agents to
travel together. A social group is based on one leader pedes-
trian that is not affected by the social group loss (via de-
tach/stop grad); others in the group will tend to move with
the leader. Intuitively, we want each agent in the social
group to maintain a specified social distance dsoc to the clos-
est agent also in the same social group. Let ψ be a map from
one agent index to another, e.g. i = ψ(k) means agent k in
the social group is mapped to agent i. Then the social group
loss for agent i at timestep j in the future trajectory is

L =
(
||sij − s

ψ(i)
j ||2 − dsoc

)2

. (14)

As shown in Fig. 2, most of the time ψ maps each agent
to the closest agent in the group, but with some probability
based on a cohesion parameter c ∈ [0, 1] the mapping will
be to a random agent in the group. So with a larger cohe-
sion, agents in the group are all encouraged to be equidis-
tant from each other, while with low cohesion agents will
not closely follow the leader and connected components in
the social group graph may break off and ignore others.

Learned Value Function. Given a learned value func-
tion V (τ s) that predicts the future rewards over a given
trajectory, in general this guidance loss is simply L =
exp(−V (τ s)). When TRACE is used with PACER, the
value function is V (vt|τ s,ht,ot,β); it takes in the current
humanoid state ht, environmental feature ot, and humanoid
shape β, which are fixed throughout denoising.

C. PACER Details
In this section, we give details on the Pedestrian

Animation ControllER (PACER) presented in Sec 3.2.

C.1. Implementation Details

Humanoid State. The state ht holds joint positions jt ∈
R24×3, rotations qt ∈ R24×6, linear velocities vt ∈ R24×3,
and angular velocities ωt ∈ R24×3 all normalized w.r.t. the
agent’s heading and root position. The rotation is repre-
sented in the 6-degree-of-freedom rotation representation.
SMPL has 24 body joints with the root (pelvis) as the first
joint, which is not actuated, resulting in an action dimension
of at ∈ R23×3. No special root forces/torques are used.
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CNN

Figure 3. The PACER policy network πPACER consists of a task
feature processer EPACER(ϕt|ot, τ s) and an action policy network
πA

PACER(ϕt,ht).

Network Architecture. As mentioned in the main paper,
the environmental feature ot is a rasterized local height and
velocity map of size ot ∈ R64×64×3. The first channel is
the terrain height map relative to the current humanoid root
height, and the second & third channels are the 2D linear
velocities (x and y directions) in the egocentric coordinate
system. The map corresponds to a 4m × 4m square area
centered at the humanoid root, sampled on an evenly spaced
grid. The trajectory τ s ∈ R10×2 consists of the 2D way-
points for the next 5 seconds sampled at 0.5 s intervals.

The architecture of πPACER can be found in Fig. 3.
Due to the high dimensionality of the environmental fea-
tures ot, we separate the policy network into a task fea-
ture processer EPACER(ϕt|ot, τ s) and an action network
πAPACER(at|ϕt,ht,β). The task feature processor trans-
forms task-related features, such as environmental fea-
tures ot and trajectory τ s into a latent vector ϕt ∈
R256. Then, πAPACER computes the action at based on
the humanoid state ht, body shape β, and ϕt. The
overall policy network is then πPACER(at|ot,ht,β, τ s) ≜
πAPACER(EPACER(ot, τ s),ht,β). EPACER is a four-level con-
volutional neural network with a stride of 2, 16 filters, and
a kernel size of 4. πAPACER is a standard MLP with ReLU ac-
tivations. It has two layers, each with 2048 and 1024 units.
The policy maps to the Gaussian distribution over actions
πPACER(at|ot,ht,β, τ s) = N (µ(ot,ht,β, τ s),Σ) with a
fixed covariance matrix Σ. Each action vector at ∈ R23×3

corresponds to the PD targets for the 23 actuated joints on
the SMPL human body. The discriminator D(ht−10:t,at)
shares the same architecture as πAPACER, while the value
function V (vt|ot,ht,β, τ s) shares the same architecture as
the policy πPACER.

C.2. Reward and Loss

Reward. Following AMP [12], our policy πPACER is learned
through goal-conditioned RL where the reward contains a
task reward rτt , a style reward ramp

t , and an energy penalty
renergy
t . The style reward is computed by the discriminator

D(ht−10:t,at) based on 10 steps of aggregated humanoid
state. We use the same set of observations, loss formulation,
and gradient penalty as in AMP [12] to train our discrimi-
nator. Task reward rτt is a trajectory-following reward that
measures how far away the humanoid’s center ct on the xy
plane is from the 2D trajectory: exp(−2×∥ct−τ t∥2). The
energy penalty is expressed as −0.0005 ·

∑
j∈ joints |µj q̇j |2

where µj and q̇j correspond to the joint torque and the joint
angular velocity, respectively.

Motion Symmetry Loss. During our experiments, we no-
ticed that asymmetric gaits emerge as training progresses. It
manifests itself as “limping” where the humanoid produces
asymmetric motion, especially at a lower speed. This could
be due to the small temporal window used in AMP (10
frames), which is not sufficient to generate symmetrical mo-
tion. Compared to AMP, we use a humanoid with more than
double the degrees of freedom (69 vs 28), and the complex-
ity of the control problem grows exponentially. This could
also contribute to limping behavior as it becomes harder for
the discriminator to discern asymmetric gaits. Thus, we uti-
lize the motion symmetry loss proposed in [19] to ensure
symmetric gaits. Specifically, we first design two functions
Φs and Φa that can mirror the humanoid state and action
along the character’s sagittal plane. Symmetry is then en-
forced by ensuring that the mirrored states lead to mirrored
actions:

Lsym(θ) = ∥πPACER(ht,ot,β, τ s)−

Φa(πPACER(Φs(ht,ot,β, τ s)))∥2,
(15)

Notice that the motion symmetry loss is not a reward and
is directly defined on the policy output. As the loss can
be computed in an end-to-end differentiable fashion, we di-
rectly optimize this loss through SGD.

C.3. Training

Our training procedures closely follow AMP [12], with
notable distinctions in the motion dataset, initialization, ter-
mination condition, terrain, and humanoids used. Training
takes ∼3 days to converge on one NVIDIA RTX 3090.

Dataset. We use a small subset of motion sequences from
the AMASS dataset [7] to train our humanoid controller.
Specifically, we hand-picked ∼200 locomotion sequences
consisting of walking and turning at various speeds, as well
as walking up and down stairs. These motions form the
reference motion database and provide our AMP Discrimi-
nator D(ht,at) with “real” samples.

Initialization. To initialize our humanoids during training,
we use reference state initialization [11] to randomly sam-
ple a body state h0. The initial root positions are randomly
sampled from a “walkable map” that corresponds to all lo-
cations that can be used as a valid starting point (e.g. not
on top of obstacles). As we use NVIDIA’s Isaac Gym, we
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Figure 4. During training, 2048 humanoids are simulated in paral-
lel on our synthetic terrain.

Figure 5. Synthetic terrains used for training PACER. From left to
right: obstacles, discrete terrains, stairs (up), stairs (down), uneven
terrains, and slopes.

create 2048 humanoids that are simulated simultaneously in
parallel during training: see Fig. 4.

Random terrain, trajectory, and body shape sampling.
To learn a model that can traverse diverse types of terrain
that pedestrians may encounter in real life, we train our
trajectory-following controller on a variety of different en-
vironments. Specifically, we follow ANYmal [15] to create
terrain curricula with varying difficulties to train our agents.
Six types of terrain are created: slopes, uneven terrain, stairs
(down), stairs (up), discrete, and obstacles. The terrains fol-
low a gradual increase in difficulty, where we vary the slope
angle, terrain unevenness, slope angle of stairs, and obstacle
density, as shown in Fig. 5.

Trajectory samples for training are generated procedu-
rally: τs is randomly sampled by generating velocities and
turn angles. We limit the velocity to be between [0, 3] m/s
and the acceleration to be between [0, 2] m/s2.

To train with different body shapes, we extract all unique
human body shapes from the AMASS dataset, which
amount to 476 shapes (273 male and 200 female). We ran-
domly sample (with replacement) 2048 body shapes to cre-
ate humanoids at the beginning of the training process. To
create reference humanoid states ĥt for the discriminator,
we perform forward kinematics based on the sampled pose
and the humanoids’ kinematic tree. At the beginning of ev-
ery 250 episodes, we randomly sample a new batch of pose
sequences from the motion dataset and create new reference

humanoid states. In this way, we obtain reference states of
diverse body types and motions.
Termination condition. To speed up training, we employ
early termination [11] and terminate the episode if there is
a collision force greater than 50 N on the humanoid body,
with either the scene or other humanoids. The ankles and
foot joints are exceptions to this rule, as they are in contact
with the ground. This condition also serves as a fall de-
tection mechanism, as falling will involve a collision force
from the ground. Notice that this termination condition
encourages the humanoid to avoid obstacles and other hu-
manoids since a collision will trigger an early termination.

D. Experimental Details
In this section, we include details of the experiments pre-

sented in Sec 4 of the main paper.

D.1. Dataset Details

The ORCA dataset contains two distinct subsets, ORCA-
Maps and ORCA-Interact. ORCA-Maps is generated with
up to 10 pedestrians and 20 obstacles in each scene. This
contains many obstacle interactions, but fewer agent-agent
interactions. ORCA-Interact has up to 20 pedestrians, but
no obstacles, and therefore has no map annotations. Each
data subset contains 1000 scenes that are 10s long, and we
split them 0.8/0.1/0.1 into train/val/test splits. The map an-
notations in the ORCA dataset contain two channels, one
representing the walkable area and one representing obsta-
cles. The bounding box diameter for every agent is fixed to
0.8m.

In nuScenes [2], there are seven map layers represent-
ing the lane, road segment, drivable area, road divider, lane
divider, crosswalk, and sidewalk. The bounding box diam-
eters are given by the dataset. We follow the official trajec-
tory forecasting benchmark for scenes in the train/val/test
splits. For ETH/UCY [6, 10], we use the official training
splits of each contained dataset for training.

All trajectory data in all datasets is re-sampled to 10 Hz
for training and evaluation of TRACE.

D.2. Guidance Metrics

Here, we define the Guidance Error for each of the ob-
jectives evaluated in Sec 4.1 and 4.2 of the main paper.
Obstacle Avoid. This is the obstacle collision rate as de-
fined below.
Agent Avoid. This is the agent collision rate as defined
below.
Waypoint and Perturbed Waypoint. If the objective is
to reach a waypoint at a specific timestep, this is simply
the distance of the agent from the target waypoint at that
specified timestep (in meters). Otherwise, if the objective is
to reach at any timestep, the error is the minimum distance
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between the agent and the goal waypoint across the entire
trajectory.

Social Groups. For each pedestrian in the group, we mea-
sure the mean absolute difference between the specified so-
cial distance dsoc (see Sec. B.2.2) and the distance to the
closest neighbor in the same social group.

Multi-Objective. For the multi-objective guidance pre-
sented in Tab 1 of the main paper (Waypoint + Avoidance),
the reported guidance error is the waypoint error since ob-
stacle and agent collision rates are already reported in other
columns.

D.3. Other Metrics

Next, we describe in more detail the metrics used to eval-
uate the standalone TRACE model in Sec 4.1 and 4.2 of the
main paper.

Obstacle Collision Rate. Measures the average fraction of
time that an agent (as represented by a single disk) is over-
lapping with an obstacle on the map within a rollout. Note
that a disk is used to represent each agent because this is
how they are represented in the ORCA simulator, so the
ground truth data contains no collisions using this represen-
tation.

Agent Collision Rate. Measures the average fraction of
agents involved in an agent-agent collision within each
scene rollout. This again uses the disk representation of
each agent.

Realism (EMD). Compares the histogram of statistics over
the entire test set between generated and ground truth tra-
jectories. This is done for velocity, longitudinal accelera-
tion, and lateral acceleration. In particular, the statistics at
each timestep of the test set are aggregated together into a
histogram. The histogram is then normalized such that it
sums to 1. The earth mover’s distance (EMD) between the
ground truth and generated histograms is then computed1

and reported. Note that this metric is computed wrt the
dataset being evaluated on. For example, in Sec 4.1 of the
main paper, even though TRACE is trained on both ORCA-
Maps and ORCA-Interact, the metric is only computed for
ORCA-Maps since this is the test data.

Realism (Mean). Measures the average longitudinal and
lateral acceleration within a generated trajectory in m/s2.
Similar metrics are commonly used in the vehicle planning
literature [18] as a proxy for how comfortable a ride is. In
our case of pedestrian motion, this is still relevant since peo-
ple tend to move in smooth motions without sudden changes
in speed or direction.

1using pyemd

D.4. VAE Baseline Details

We adapt a conditional VAE model similar to the idea
of STRIVE [13] for controlling trajectories through latent
space optimization. We adapt the VAE design to our setting.

Architecture. The architecture operates in an agent-centric
manner as in TRACE. It is a fairly standard conditional
VAE (CVAE) where the conditioning (map and past tra-
jectories) is processed into a single conditioning vector c
that is given to the decoder. At training time, the decoder
also takes in a latent vector z from the encoder (posterior),
while at test time the latent vector is sampled from the
prior p(z) = N (z;0, I). To make the methods comparable,
the map conditioning is encoded with the same ResNet-18
backbone that TRACE uses; ego and neighbor past trajec-
tories also use the same architecture as TRACE. Since the
model is agent-centric rather than scene-centric, the decoder
D is simply an MLP that maps the conditioning and sam-
pled latent to an output action trajectory (instead of a graph
network as in STRIVE) as τ a = D(z, c). In all experi-
ments, the latent dimension is 64, while the conditioning
feature vector is 256-dim.

Training. Training is done using a standard VAE loss con-
sisting of a reconstruction and a KL divergence term. The
KL term is weighted by 1e-4. The model is trained with the
same batch size as TRACE (400) and for the same number
of iterations (40k) with a learning rate of 2e-4.

Test-Time Optimization. The idea of test-time optimiza-
tion is to search for a latent vector that is likely under the
prior (i.e. represents a plausible future trajectory) but also
meets the desired guidance objective. Concretely, the opti-
mization objective is

min
z
αJ (D(z, c))− log p(z) (16)

where J is a guidance loss as described in the main pa-
per and α balances the prior term with the guidance loss.
Optimization is performed with Adam [5] using a learn-
ing rate of 0.02. For experiments in Sec 4.1 of the main
paper, optimization uses 100 iterations (same as the num-
ber of diffusion steps K). For Sec 4.2, the iteration budget
is increased to 200 to accommodate more difficult out-of-
distribution objectives.

Discussion on VAE Comparison. The VAE with test-time
optimization is generally a very strong baseline. Given a
large enough compute budget, the optimization can usually
faithfully meet the desired objective. However, the number
of optimization iterations needed to meet an objective can
be large; e.g. in Sec 4.2 it requires twice the number of diffu-
sion steps, making it slower than TRACE. Moreover, when
optimizing for a long time to closely meet objectives, the
diversity of optimized samples becomes low as they con-
verge to similar minima (Fig. 4 in the main paper). This is
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due to the prior term in Eq. (16), which always drives the
trajectory towards the mean.

D.5. Additional Experiment Details

Finally, we include miscellaneous details of the setup for
each experiment in Sec. 4 of the main paper.
Augmenting Crowd Simulation (Sec 4.1). For the no
guidance rows in Tab 1, we actually run the evaluation three
times and report the averaged metrics. This is because when
there is no guidance, no filtering is performed, so a random
sample is chosen. Running with several random samples
gives a more faithful evaluation of performance. In this
experiment, TRACE uses w = 0.0 for classifier-free sam-
pling. 20 samples are drawn and guided from the model
for each pedestrian before filtering. The weighting α for
each guide (in Eq. 6 of the main paper) is tuned manually
to meet objectives while maintaining realistic trajectories.
The Waypoint guidance used in Tab 1 is the Local Waypoint
at Any Time introduced in Sec. B.2.2. The agent avoidance
guidance uses an additional social distance buffer of 0.2m.
Real-world Data Evaluation (Sec 4.2). In this experi-
ment, 10 samples are drawn from the model before filtering
and the waypoint guidance is Global Waypoint at Any Time
since the model operates in a closed loop for longer than
the planning horizon. This waypoint guidance uses an ur-
gency of u = 0.7 and a preferred speed of vpref = 1.25m/s.
The perturbed waypoint objective randomly perturbs the
target ground truth waypoint with Gaussian noise with a
standard deviation of 2m. The social group guidance uses
dsoc = 1.5 and cohesion c = 0.3. In each nuScenes
scene, social groups are determined heuristically by form-
ing a scene graph where edges are present if two pedestrians
are within 3m of each other and moving in a similar direc-
tion (velocities have a positive dot product): the connected
components of this graph with more than one agent form
the social groups.
Controllable Pedestrian Animation (Sec 4.3). In this ex-
periment, 10 samples are drawn from the model before fil-
tering. Waypoint guidance uses Global Waypoint at Spe-
cific Time with the waypoint randomly placed at a reason-
able distance ([7, 12] meters in front of the user and up to 5
meters to either side) 9 sec in the future. Agents are initial-
ized in a standing pose with a uniform random initial root
velocity in [1.2, 2.0]m/s.

E. Supplementary Results
In this section, we include additional experimental re-

sults omitted from the main paper due to page limits.

E.1. Qualitative Results

Extensive qualitative video results for both TRACE and
PACER are provided on the supplementary webpage.

Figure 6. Random sampling with no guidance from different
TRACE architecture ablations. Using the learned feature map has
apparent benefits in subtle interaction with obstacles. 20 random
samples are visualized for each pedestrians with the (arbitrarily)
chosen plan in bold.

E.2. TRACE– No Guidance Ablation Study

The focus of our work is on controllability using guid-
ance. However, it is still desired that the model performs
well even when guidance is not used. In particular, ran-
dom samples from the model should be robust (avoid col-
lisions), realistic (similar to the training data distribution),
and accurate (capture the ground truth future trajectory).
To this end, we evaluate our architecture and training ap-
proach compared to baselines and ablations while using no
guidance. We evaluate in the open-loop 5s rollout setting
on ORCA-Maps as used in Sec. 4.1 of the main paper.
Two additional metrics common in trajectory forecasting
are evaluated: the average displacement error (ADE) and
the final displacement error (FDE) [20]. For a trajectory
sample defined from timesteps 1 to T , these are defined as
ADE = 1

T

∑T
t=1 ||ŷt−yt||2 and FDE = ||ŷT −yT ||2 with

ŷ the sample from the model and y the ground truth.
First, we evaluate the TRACE architecture, which uses

a feature grid to condition denoising on the map input. An
alternative way to condition trajectory generation is to en-
code the map into a single (“global”) feature vector using
a convolutional backbone. This global feature can then be
given in the same way as the past trajectory features. The
VAE baseline and TRACE-Global ablation do this using a
ResNet-18 backbone. The TRACE-Raster ablation is sim-
ilar to CTG [21], which rasterizes both the map and agent
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History Map Accuracy Collision Rate Realism (EMD)
Method Input Feature ADE FDE Obstacle Agent Vel Lon Acc Lat Acc

VAE [13] States Global 0.340 0.774 0.062 0.115 0.041 0.038 0.039
TRACE-Raster Raster Global 0.337 0.808 0.052 0.100 0.027 0.013 0.014
TRACE-Global States Global 0.280 0.686 0.056 0.094 0.022 0.013 0.016

TRACE States Grid 0.318 0.757 0.046 0.110 0.028 0.020 0.020

Table 1. No guidance evaluation on ORCA-Maps dataset. Ablation on architecture design choices.

Drop Accuracy Collision Rate Realism (EMD)
Train Data Rate ADE FDE Obstacle Agent Vel Lon Acc Lat Acc

ORCA-Maps 10% 0.351 0.819 0.040 0.112 0.030 0.023 0.024
Mixed 0% 0.303 0.719 0.042 0.123 0.028 0.019 0.020
Mixed 5% 0.307 0.712 0.040 0.108 0.024 0.020 0.023

Mixed 10% 0.318 0.757 0.046 0.110 0.028 0.020 0.020

Table 2. No guidance evaluation on ORCA-Maps dataset. Ablation on training routine.

histories and encodes them into a single global feature in-
stead of encoding the trajectory states separately. Tab. 1
shows the results comparing these methods. In this exper-
iment, we take 20 samples from each model and evaluate
the one that is closest to the ground truth wrt the ADE. We
see that using the feature grid map provides the lowest ob-
stacle collision rate while maintaining competitive accuracy
and realism. As qualitatively shown in Fig. 6, the use of the
feature grid gives local cues to the model to inform sub-
tle obstacle interactions and avoid collisions. Though agent
collisions are slightly worse with the grid map, no model
does particularly well, and exploring improved agent-agent
interactions is an important direction for future work.

In the main paper, we discuss how mixed training data
and classifier-free sampling (i.e. training with random drop-
ping on conditioning) are important to enable flexibility for
guidance. To ensure this training approach does not nega-
tively affect base model performance without guidance, we
compare to (1) an ablation that uses the ORCA-Maps data
only to train (rather than a mix of ORCA-Maps+ORCA-
Interact) and (2) ablations that use varying levels of drop-
ping. Tab. 2 shows results, where again the sample clos-
est to ground truth is evaluated. Interestingly, training with
mixed data allows for increased accuracy compared to train-
ing only on the ORCA-Maps dataset. Increasing the drop
probability past 5% has very little effect on performance
and comes with the added benefit of using classifier-free
sampling to get flexible guidance at test time.

E.3. TRACE– Effect of Classifier-Free Sampling

Next, we examine how weight w affects model perfor-
mance when using classifier-free sampling both with and
without guidance. First, we analyze the effect when eval-
uating on the ORCA-Maps dataset with no guidance in the
open-loop setting (like Sec 4.1 of the main paper). In this
case, we evaluate w ≥ 0 which increases emphasis on the
input conditioning to the model. Quantitative results are

Collision Rate Realism (EMD)
w Obstacle Agent Vel Lon Acc Lat Acc

0.0 0.051 0.131 0.019 0.012 0.014
0.3 0.051 0.130 0.027 0.008 0.010
0.5 0.050 0.132 0.029 0.008 0.009
0.7 0.050 0.132 0.033 0.009 0.008
1.0 0.049 0.130 0.040 0.010 0.009
2.0 0.051 0.132 0.063 0.017 0.015
3.0 0.052 0.138 0.087 0.025 0.022
4.0 0.051 0.145 0.102 0.033 0.028

Table 3. Classifier-free sampling analysis on ORCA-Maps dataset
with no guidance.

Waypoint Realism (Mean)
w Error Lon Acc Lat Acc

0.0 1.129 0.233 0.218
-0.3 0.972 0.213 0.199
-0.5 0.802 0.212 0.204
-0.7 0.670 0.240 0.233
-1.0 0.546 0.345 0.348

Table 4. Classifier-free sampling analysis on nuScenes dataset us-
ing perturbed waypoint guidance.

shown in Tab. 3: for each value of w, the evaluation is run 3
times with different random samples and the metrics are av-
eraged. For w ∈ [0, 1], the collision rates and acceleration
realism remain similar or slightly improve, which we expect
since input conditioning such as the obstacle map is empha-
sized. For w>1, the guidance tends to be too strong and
the trajectory samples are almost deterministic. Though the
quantitative difference is not large as w increases, in Fig. 7
we see that increasing does have a considerable qualitative
effect.

Second, we look at results on the nuScenes dataset using
perturbed waypoint guidance in the closed-loop setting (the
same as in Sec. 4.2 of the main paper). In Sec. 4.2 of the
main paper, we saw that using w < 0 improves suscepti-
bility to guidance and allows the model to achieve out-of-
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Figure 7. Sampling using increasing classifier-free weights w. 20
samples are visualized for each pedestrian. Larger w tends to em-
phasize collision avoidance and reduces the variance of the sam-
pled trajectory distribution, especially for pedestrians near obsta-
cles where conditioning has a large effect on motion.

Fail Traj Follow
Terrain Model Guide Rate Error

Flat Agent Unaware None 0.252 0.102
(Crowd) Agent Aware None 0.087 0.082

Agent Unaware Agt Avoid 0.060 0.067
Agent Aware Agt Avoid 0.013 0.071

Random Body Unaware None 0.125 0.105
Body Aware None 0.093 0.104
Body Unaware Waypoint 0.103 0.102
Body Aware Waypoint 0.107 0.111

Table 5. PACER ablation study while using TRACE as the trajec-
tory planner.

distribution objectives. This is further confirmed in Tab. 4.
We see that the smaller thew, the better the waypoint reach-
ing error. However, for w < −0.5 the mean accelerations
of pedestrians start to deviate more from those observed in
the ground truth nuScenes data, as the model is capable of
producing more extreme trajectories to reach waypoints.

E.4. PACER– Ablation Study

In this experiment, we demonstrate the importance of
multiple design decisions in the PACER model. First, we
choose to make the animation controller agent-aware by
including neighboring pedestrians in the heightmap given
to the model. For comparison, we train a model that is
agent unaware, i.e., the input height map only contains ob-
stacles. As seen in the top half of Tab. 5, even though
TRACE is already agent-aware, having PACER endowed
with awareness is highly beneficial. Both with and with-
out agent avoidance guidance on TRACE, the agent-aware

Figure 8. TRACE planning time within the end-to-end pedestrian
animation system for varying terrains, guidance, and number of
simulated agents.

model greatly improves the collision rate.
Second, we evaluate whether making PACER body-

aware is necessary, i.e. if it needs to take the parameters
of the SMPL body β shape as input, as it is already train-
ing in simulation with a variety of body shapes. The bottom
half of Tab. 5 shows that while traversing random terrains,
body awareness helps to improve the failure rate when no
guidance is used. When waypoint guidance is added, per-
formance is essentially unchanged.

As motion is best seen in videos, we also include videos
of how the symmetry loss and body shape conditioning af-
fect motion quality; please see the supplementary webpage.

E.5. Runtime Analysis

Fig. 8 shows an analysis of the average runtime for one
planning step of TRACE within the end-to-end animation
system (on an NVIDIA TITAN RTX). Varying numbers of
simulated humanoids are tested using the terrains and guid-
ance introduced in Sec 4.3 of the main paper. With ≤50
agents, TRACE planning takes ≤5 sec, but becomes more
costly with 100 agents, especially using agent avoidance
guidance. Since collision avoidance requires pairwise com-
parisons between many agents, it can be costly.

The standalone PACER model is real time, running at
∼30 fps for 1 humanoid and ∼25 fps for 100.

F. Discussions and Limitations

TRACE Efficiency. The main limitation of using our sys-
tem in a real-time setting is the speed of the denoising pro-
cess. This is a well-known issue with diffusion models, and
the community is actively working to address it. For exam-
ple, recent work on distilling diffusion models [8] could be
applied here to greatly speed up sampling.
Multi-Objective Guidance. One challenge with using sev-
eral objectives simultaneously to guide TRACE is balanc-
ing the weight α for each. Though it is not difficult to
tune each weight individually, we found that when com-
bined, the guidance strength can be too much depending on
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the scene. Intuitively, if two guidance objectives are push-
ing a trajectory in the same direction (e.g. avoiding obstacle
collision and going to a waypoint), the combined guidance
will have compounded strength that may push the trajec-
tory to diverge off-manifold. Work in image generation has
noticed similar effects when using strong guidance, which
manifests itself as saturated images. To avoid this, various
forms of dynamic clipping during sampling have been in-
troduced [16]. While this makes sense for images that have
been normalized in a fixed range, it is not trivial for trajec-
tories and we think this is an interesting problem for future
work.

PACER Motions. Though PACER is robust and traverses
diverse terrains while driving humanoids with different
body shapes, it struggles with large obstacles when there
is no way around them. The motion generated at low speed
can also be unnatural as our motion database contains few
samples where the humanoid is traveling at extremely low
speed. Our humanoids also lack motion diversity, since
most body types will have similar walking gaits and will
not manifest common pedestrian behaviors such as talking
on the phone or with each other. More research is needed to
improve the quality and diversity of the motion.
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