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1. Method details
In this section, we describe in detail some modules that

bridge the domain gap, including good-hard negative sam-
ples mining, memory bank, momentum update and the way
to measure domain gaps.

1.1. Bridging domain gaps

To bridge domain gaps for image captioning, we use
an encoder-decoder framework to translate the input image
into a natural language description.

For each input source domain image Iji , we extract a set
of image regions [1] Xj

i by a pre-trained Faster-RCNN [14].
We use Transformer [16] based refined encoder to refine vi-
sual features. Through n layers of attention, we get refined
visual features V. The decoder is similar to the refined en-
coder, using a multi-layer multi-head attention mechanism,
but the attention mechanism is based on cross-attention with
refined visual features.

1.1.1 Good-hard negative samples mining

We choose the ’good-hard’ negative samples with the
smaller simt of the anchor sample as the good-hard neg-
ative sample, and our language-guided triplet sampling can
easily implement this strategy. As shown in Fig. 1, we only
need to set an upper bound nu and a lower bound nl for the
negative samples simt.

1.1.2 Memory Bank

A large set of negative samples can have an important im-
pact on feature learning, as revealed by recent work [3, 7,
20]. However, the number of negative samples is limited by
the mini-batch size. Especially when mining hard negative
samples, it is difficult to be efficient. Inspired by [7, 20],
we employ the external memories as a bank to store the vi-
sual feature representations vk by the encoder (or linguistic
feature representations by the decoder), and corresponding

*Corresponding authors.

Dataset: Flickr30k

A

B

Anchor

Positive

Negative

𝑣𝑤𝐼𝑜𝑈 𝐴, 𝐵 =
𝐺𝑟𝑜𝑢𝑝𝑣𝑤

𝐴 ∩ 𝐺𝑟𝑜𝑢𝑝𝑣𝑤
𝐵

𝐺𝑟𝑜𝑢𝑝𝑣𝑤
𝐴 ∪ 𝐺𝑟𝑜𝑢𝑝𝑣𝑤

𝐵
=
4

9
𝑝𝑡ℎ = max(𝑣𝑤𝐼𝑜𝑈, 𝑠 ∗ 𝑠𝑖𝑚𝑡)

Select

Good-hard Negative

Dataset: MSCOCO

Captioning: 

A brown bird is sitting on a tree branch.

ADJ N V N N

𝐺𝑟𝑜𝑢𝑝𝑣𝑤
𝐴 = {brown, bird, sitting, tree, branch}                        

Captioning:

a black and white bird with red eyes sitting on a tree branch.

ADJ ADJ N ADJ N V N N

𝐺𝑟𝑜𝑢𝑝𝑣𝑤
𝐵 = {black, white, bird, red, eyes, sitting, tree, branch}

𝑝𝑡ℎ

n𝑢

nl

Figure 1. The schematic diagram of language-guided triplet sam-
pling. We show a circle centered on the anchor. The smaller the
1/simt of the sample and the anchor, the closer to the anchor in
the circle.

caption ck, the memory bank Mem with a size of mbs can
be formulated as

Mem = {M1, · · · ,Ms|Mk = (vk, ck)}. (1)

To maintain the memory bank, we add the newest fea-
ture representations and corresponding visual words group
while removing the oldest content for each batch.

1.1.3 Momentum update

After we construct the memory bank, we can improve
the efficiency of metric learning through better negative
example mining. However, it still suffers from non-
synchronization of feature representations because of the
rapidly-changed encoder. Following [7], we use a momen-
tum update by a momentum encoder to feed visual feature
representations to the memory bank. The momentum en-
coder parameter θme is updated as the encoder parameter
θe is optimized by a back-propagation of the loss function
following

θme = m ∗ θme + (1−m) ∗ θe, (2)
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Dataset Domain # Images # Caps per
image Caps length

MSCOCO [11] Common 132 K 5 10.5
VizWiz [6] Assistive 70 K 5 13.0
Flickr30K [21] Social 31 K 5 12.4
CUB-200 [19] Avian 12 K 10 15.2
Oxford-102 [12] Floral 8 K 10 14.1

Table 1. Statistics of five domains in DGIC.

where m ∈ [0, 1) is a momentum coefficient to adjust the
updated degree, and θme evolves more smoothly than θe. In
addition to the encoder, we can also use momentum update
to the decoder to feed text features to memory for metric
learning. We find in the ablation experiment that the fea-
tures of the encoder and decoder are very different, and the
effect of the encoder is better than that of the decoder.

1.2. Measuring the domain gaps for DGIC
As introduced in the main paper, we measure domain

gaps by using the Maximum Mean Discrepancy (MMD) [5]
theory. The MMD distance between domains DS and DT

can be measured according to the following equation:

MMD(DS ,DT )2 = ∥µPs − µPt∥
2
H , (3)

where µPs := Es∼DS [ϕ(s)] and µPt := Et∼DT [ϕ(t)] are
the samples projected in a reproducing kernel Hilbert space
(RKHS) H, and ϕ(·) : Rd → H represents a mapping
operation. We can use the kernel embedding technique to
represent the arbitrary distribution when the kernel k(·, ·)
meet to be characteristic, which the mapping to the RKHS
H is injective [15]. Then we employ a kernel function
k(si, tj) = ϕ(si)ϕ(tj)

⊺ induced by ϕ(·), and the MMD
distance can be reformulated as:

MMD(DS ,DT )2 =
1

n2
s

ns∑
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ns∑
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1

n2
t

nt∑
i=1

nt∑
j=1

k(ti, tj)−
2

nsnt
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where ns, nt represent sample size in the source and target
domains, respectively.

In this work, we use the RBF characteristic kernel to
compute both visual and linguistic features with k(si, tj) =

exp(− 1
2α ∥si − tj∥2) and α = 1; 5; 10.

2. Experiments and analysis
In this section, we show more details about the DGIC

benchmark, implementation details and ablation experi-
ments.

2.1. The DGIC Benchmark

2.1.1 Datasets

The DGIC benchmark consists of 253K images and
1,365K captions, sourced from MSCOCO [11], VizWiz [6],
Flickr30K [21], CUB-200 [13,19] and Oxford-102 [12,13].

The statistics of these datasets are shown in Tab. 1. The
details about datasets are below:
MSCOCO. The MSCOCO dataset [11] is a widely used
dataset and covers the common domain. It contains more
than 120,000 images in total, and each of these images
comes with at least 5 human-annotated sentences as the
ground truth captions. We follow the data split provided
by Karpathy et al. [8], where the training, validation, and
test splits include 113,287, 5,000, and 5,000 images, respec-
tively.
VizWiz. The VizWiz dataset [6] consists of 39,181 images
originating from people who are blind. The VizWiz is the
specific assistive domain dataset towards assistive technolo-
gies, and each of these images is paired with 5 ground-truth
captions. Similar to [8], we divide it into 23,429 images for
training, 3,750 images for validation, and 4,000 images for
test.
Flickr30k. The Flickr30k [21] dataset is used as the social
domain. There are 31,783 images in this dataset, and each
image is also annotated with 5 sentences. We adapt the data
split from [8], where 29,000 images are used for training,
1,014 images are used for validation, and 1,000 images are
used for test.
CUB-200. The CUB-200 dataset [19] is the avian domain
dataset. It includes 11,788 images of birds in total, which
is paired with 10 sentence annotations for each image by
Reed et al. [13]. Similar to [8], we divide it into 9,788 im-
ages for training, 1,000 images for validation, and 1,000
images for test.
Oxford-102. The Oxford-102 dataset [12] is the floral do-
main dataset. It includes 8,189 images of flowers in total,
which is paired with 10 sentence annotations for each image
by Reed et al. [13]. Similar to [8], we divide it into 6,189
images for training, 1,000 images for validation, and 1,000
images for test.

We also illustrate the differences in label spaces among
MSCOCO, VizWiz, Flickr30k, CUB-200, Oxford-102 by
using word clouds (see Fig. 2).

2.1.2 Implementation details

For input image representations, we obtain a 2048-D
Bottom-up [1] feature for each region with a pre-trained
Faster-RCNN [14]. We set the dimensionality of each layer
to 512, the number of encoder and decoder layers to 6, and
the number of heads to 8. To achieve language-guided se-
mantic metric learning, we set the sentence scaling factor
s to 0.29, the positive threshold value pth to 0.2, the up-
per bound nu of negative sampling to 0.02, the lower bound
nl of negative sampling to 0.01, the margin δ of the triplet
loss to 2, the cross-entropy loss weight α to 1, the inter-
domain metric learning weight β to 0.01, the intra-domain
metric learning weight γ to 0.01, the size mbs of the mem-
ory bank to 800, and the momentum coefficient m of mo-
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Figure 2. Word clouds for five datasets of DGIC.
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Figure 3. Comparison of different memory bank size.

m 0.999 0.9 0.8
CIDEr 53.24 52.00 51.61
SPICE 16.08 16.04 15.81

Table 2. Comparison of different momentum coefficient m.

mentum update to 0.99. We use the Adam optimizer [9] to
train our model with the learning rate defined as 0.05. We
use 20,000 warmup steps, and use a batch size of 50. We
train the model with cross-entropy loss and triplet loss for
50 epochs. To implement our framework, we utilize the Py-
Torch library on NVIDIA A100 GPUs. We prune the vocab-
ulary by dropping words with a frequency of less than 5 and
adding special Unkown (UNK), Begin-Of-Sentence (BOS),
and End-Of-Sentence (EOS) tokens. In order to simplify
the implementation, we employ a joint vocabulary contain-
ing words in both the source domains and the target domain
similar to [22].
2.1.3 Parameter analysis
Memory bank size. Fig. 3 shows that our method has bet-
ter performance with a large memory bank size, but a large
memory bank size will lead to the computational burden
due to the calculation of triplet loss through visual features
and captions. Therefore, we need to make a trade-off be-
tween performance and computational cost. So, we set our
memory bank size as 800 in our implementation.
Momentum coefficient. Tab. 2 shows that our method has
better performance with a large momentum coefficient due
to the better feature consistency. Therefore, we set momen-
tum coefficient as 0.999 in our implementation.

Dataset Domain # Images # Caps per
image

Caps
length

COCOfog-no [11] No Fog 132 K 5 10.5
COCOfog-mild Mild Fog 132 K 5 10.5
COCOfog-normal Normal Fog 132 K 5 10.5
COCOfog-heavier Heavier Fog 132 K 5 10.5
COCOfog-severe Severe Fog 132 K 5 10.5

Table 3. Statistics of fog sub-benchmark in DGIC.

Dataset Domain # Images # Caps per
image

Caps
length

COCOro0 [11] 0 Degree Rotation 132 K 5 10.5
COCOro45 45 Degree Rotation 132 K 5 10.5
COCOro60 60 Degree Rotation 132 K 5 10.5
COCOro75 75 Degree Rotation 132 K 5 10.5
COCOro90 90 Degree Rotation 132 K 5 10.5

Table 4. Statistics of rotation sub-benchmark in DGIC.

3. Constructing synthetic sub-benchmarks

In this section, we propose two synthetic datasets to fur-
ther explore domain generalization for image captioning.

3.1. Datasets

Domain generalization can be divided into homogeneous
and heterogeneous depending on whether the different do-
main label spaces are identical or not [10,23]. In order to ex-
plore the homogeneous captioning setting, we propose two
synthetic sub-benchmarks for DGIC. Each sub-benchmark
is composed of five different levels of synthetic datasets,
similar to Rotated MNIST [4] and the synthetic semantic
segmentation dataset [17] for DG. When compositing dif-
ferent datasets for DGIC, we ensure that the synthetic oper-
ation does not change the caption semantics of the image
(e.g., partial cropping, puzzle transformation, color style
transfer do not meet the conditions), and we use the Al-
bumentations [2] to synthesize two sub-benchmarks of fog
and rotation based on MSCOCO. The statistics of fog sub-
benchmark and rotation sub-benchmark are shown in Tab. 3
and Tab. 4.



Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 28.69 14.65 7.87 4.58 10.23 26.83 39.07 10.47

LSML

no+mild+normal+heavier
→very severe fog 29.45 15.09 8.20 4.75 10.58 27.41 40.55 10.78

Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 30.03 15.66 8.70 5.17 10.97 28.08 44.76 11.58

LSML

no+mild+normal+very
severe→heavier fog 30.21 16.05 8.96 5.28 11.14 28.49 46.55 12.20

Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 31.97 17.30 9.80 5.84 12.21 29.44 52.94 14.40

LSML

no+mild+heavier+very
severe→normal fog 32.36 17.85 10.33 6.28 12.44 30.01 56.89 14.73

Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 34.53 19.76 11.61 7.14 13.78 31.89 65.58 16.94

LSML

no+normal+heavier+very
severe→mild fog 34.42 19.88 11.86 7.36 13.82 32.05 67.82 17.39

Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 36.19 21.23 12.67 7.94 14.71 33.45 74.13 18.90

LSML

mild+normal+heavier+
very severe→no fog 36.30 21.56 13.08 8.29 14.88 33.70 76.06 19.22

Table 5. Comparison with State-of-the-Arts domain generalization methods on five synthetic fog datasets on the DGIC sub-benchmark.
The performance is evaluated by BLEU1-4, METEOR, ROUGE, CIDEr and SPICE.

Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 35.32 20.57 12.33 7.72 14.55 32.99 73.45 18.80

LSML

0+45+60+75→90
degree rotation 35.41 20.72 12.48 7.85 14.60 33.28 75.59 18.91

Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 35.75 20.94 12.56 7.83 14.58 33.44 74.62 18.65

LSML

0+45+60+90→75
degree rotation 35.70 21.05 12.84 8.14 14.72 33.63 76.76 19.28

Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 34.17 19.61 11.60 7.19 13.87 32.07 67.85 17.56

LSML

0+45+75+90→60
degree rotation 34.44 19.91 11.85 7.33 13.94 32.41 68.94 17.68

Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 34.25 19.53 11.46 7.02 13.83 32.15 67.39 17.33

LSML

0+60+75+90→45
degree rotation 34.71 20.08 11.88 7.40 14.11 32.74 69.75 17.93

Method Source→Target BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

EISNet 35.19 20.42 12.04 7.32 14.42 32.89 69.84 18.43

LSML

45+60+75+90→0
degree rotation 35.35 20.57 12.34 7.68 14.40 33.05 72.05 18.95

Table 6. Comparison with State-of-the-Arts domain generalization methods on five synthetic rotation datasets on the DGIC sub-benchmark.

3.2. Experiments
To demonstrate the performance of our method, we

compare EISNet [18] with our proposed method with the
same backbone (Transformer [16]) on these synthetic sub-
benchmarks: (1) MSCOCO-Rotation (0, 45, 60, 75, and 90
degrees); (2) MSCOCO-Fog (no fog, mild fog, normal fog,
heavier fog, and very severe fog). In terms of implementa-
tion, EISNet uses the same source from different domains

as positive samples, and our LSML uses only inter-domain
metric learning and visual words-guided triplet sampling to
demonstrate the importance of discriminative features for
cross-domain semantic learning and to prove the impor-
tance of visual words even in the case where there is almost
no domain gap in the language. Tab. 5 and Tab. 6 show the
better effectiveness of our language-guided semantic metric
learning.
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