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1. Training Settings

In the experiments on ImageNet-1K, we employ an
AdamW [5] optimizer for 300 epochs using a cosine de-
cay learning rate scheduler and 20 epochs of linear warm-up.
A batch size of 1024, an initial learning rate of 0.001, and
a weight decay of 0.05 are used. We include most of the
augmentation and regularization strategies (e.g., repeated
augmentation [4], CutMix [9], and Mixup [10]) of [7] in
training, as shown in Table 1.

Table 1. Ingredients and hyper-parameters for our method.

Epochs 300

Batch size 1024
Optimizer AdamW
learning rate 0.0005× batchsize

512
Learning rate decay cosine
Weight decay 0.05
Warmup epochs 20

Label smoothing ϵ 0.1
Dropout ×
Repeated Aug

√

Gradient Clip.
√

Rand Augment 9/0.5
Mixup prob. 0.8
Cutmix prob. 1.0
Erasing prob. 0.25

2. Training Efficiency

We train our proposed method on ImageNet-1K with
8 V100 NVIDIA GPUs. We note that the computational
consumption of the MJP procedure is negligible (i.e., +2%
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Figure 1. Comparisons the top-1 accuracy of DeiT-S and DeiT-
S+MJP during the training: (a) the whole training and (b) a zoom-in
screenshot for the accuracy larger than 60%.

time consumption per epoch). Meanwhile, MJP accelerates
the convergence during the training as show in Figure 1.

3. Position Embeddings
3.1. Position Regression

Inspired by Wang et al. [8], we also check whether a po-
sition embedding can actually capture its absolute position.
To some extent, such position information could be recon-
structed by a reversed mapping function g : X → P , where
X and P are embedding space and position space, respec-
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Figure 2. UMAP projections of the position embeddings collected from: (a) the original DeiT-S [2], (b) - (f) are DeiT-S+MJP trained with
masking ratio γ = {0.03, 0.09, 0.15, 0.21, 0.27} respectively.

Table 2. Mean absolute error of the reversed mapping function
learned by linear regression.

Method 1D MAE 2D MAE

DeiT-S [7] .945±.031 .076±.004

DeiT-S + MJP (DAL - LN) .566±.013 .042±.002

DeiT-S + MJP (DAL - NLN) 1.301±.035 .134±.003

Table 3. Segmentaion results on ADE20K dataset (Pre-trained on
ImageNet-1K).

Method Top-1 Acc mIoU mAcc

Swin-Tiny [1] 81.3 43.87 55.22
Swin-Tiny + MJP 81.3 44.03 (+0.16) 55.50 (+0.28)

tively. Thus, we use linear regression to learn such a function
g that transfers the embeddings to the original positions. For
the position embeddings in ViTs, we can map them into ei-
ther 1-D sequence space or 2-D patch grid space. Given we
only have 196 data points (i.e., 224×224 image resolution
with 16×16 patch size) for each learned embedding, a 5-fold
cross-validation is applied to avoid overfitting. The reversed
mapping functions are evaluated by Mean Absolute Error
(MAE), and the result is shown in Table 2.

From the results, the reversed mapping function of learnt

position embeddings by “DeiT-S + MJP (DAL-LN)” can
better represent the absolute positions. Meanwhile, the em-
beddings learned by the original DeiT-S and “DeiT-S + MJP
(DAL-NLN)” also well learn the information about the ab-
solute positions. Similar to [8], we have also tried some
more complicated non-linear models such as SVM or MLP
to map the embeddings back, which suffer from overfitting
issue and perform worse. This implies that the position infor-
mation in ViTs can actually be modeled by a linear model,
which is consistent with Transformer encoders used in NLP
field. Besides, the MAE of “DeiT-S+MJP (DAL - NLN)” is
larger than the MAE of “DeiT-S+MJP (DAL - LN)” in Table
2. It indicates the nonlinear regression during the training
aggregate more information beyond the position information
(i.e., more informative). The results are consistent with the
Fig.4 in our main paper.

3.2. Projections of Position Embeddings

As shown in Figure 2, the position embeddings learned
by the original DeiT-S is in a form of structured grids. Once
we introduce MJP strategy to the training, it makes the pro-
jection of these position embeddings less structured. Mean-
while, the spatial-wise relative position information is pre-
served. We assume that the additional information (i.e., more
informative) in the position embeddings leads to such a dif-
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Figure 3. Visual comparisons between visualization maps of the
last self-attention in DeiT-S [7] and our proposed DeiT-S+MJP.

ference.

4. Fine-tuning for Semantic Segmentation

A fine-tuning experiment on ADE20K dataset for seman-
tic segmentation is presented. We use the popular Uper-
Net architecture with a Swin-Tiny backbone pre-trained on
ImageNet-1K. The re- sults shown in Tab. 3 indicate that our
MJP doesn’t have negative effects on other regular position-
sensitive tasks.

5. Robustness to Corruptions

We show the details on the evaluation with ImageNet-
C [3], as shown in Table 4. Compared to the original DeiT-
S, our method achieves better performance on most tested
corruptions.

6. Visualization of the last self-attention

The visualization the last self-attention of our method
in Fig. 3. It shows that the attention heads of our method
present more diverse and content-aware attentions than orig-
inal DeiT-S.

7. More details on Privacy Preserving
7.1. Privacy Protection by Random Patch Permu-

tation

Existing analytic gradient attack algorithms mainly model
the problem as a linear system with closed-form solutions [6,
11]. For ViTs, the linear system is defined as:

∂l

∂z0
zT0 =QQQT ∂l

∂QQQ
+KKKT ∂l

∂KKK
+ VVV T ∂l

∂VVV
(1)

where z0 denotes the image embedding that consists of patch
embedding and positional embedding (i.e., z0=xxxpE+Epos,
where xxxp denotes the sequence of flattened 2D patches and
E represents the trainable linear projection). Since we have
∂l/∂z=∂l/∂Epos, the positional embedding layer is thus vul-
nerable to the gradient leakage attack. When the gradient
∂l/∂Epos is accessible, the image can be reconstructed as:

xxxp =
(
(

∂l

∂Epos
)−1(QQQT ∂l

∂QQQ
+KKKT ∂l

∂KKK
+VVV T ∂l

∂VVV
)−Epos

)
E−1

(2)
As indicated above, the gradient leakage of the PEs make the
image easily reconstructed with closed-form solutions. To
resolve this issue, we propose to randomly permute a portion
of the image patches via our proposed block-wise random
jigsaw shuffle algorithm A.1. The random permutation will
drastically change both Epos and ∂l/∂Epos in the above equa-
tion. This could significantly increase the difficulties to solve
the linear system and reconstruct the image.

7.2. More visual results

Figure 4 and Figure 5 shows more visual results on image
recovery with the gradient updates. Both these to figures
clearly show that our method alleviates the privacy leakage
issue a lot compared to the baselines, where most of the
details are lost.
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Figure 4. Visual comparisons on image recovery with gradient updates [6]. We test both the original images without shuffling the patches
and images shuffled with a masked ratio γ = 0.9.
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Figure 5. Visual comparisons on image recovery with gradient updates [6]. We test both the original images without shuffling the patches
and images shuffled with a masked ratio γ = 0.9.
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