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1. Volume Rendering of SRDF and SDF
We volume render the Signed Ray Distance Functions

(SRDF) based on the volume rendering theory for Signed
Distance Functions (SDF) from NeuS [7]. As shown in Fig. 1,
we consider multiple surface intersections (shadowed lines)
along the ray with several intersection points. For SRDF,
we set the surface normal vectors to be random at the in-
tersection points (pink) since the distribution of SRDF is
irrelevant to the surface normal. For SDF, we set the surfaces
to be perpendicular (blue) to the ray at the intersection points.
In this case, the distributions of SRDF and SDF values are
the same. Therefore, the distribution of SRDF along the ray
is the same as that of SDF with the surfaces perpendicular
to the ray direction at the same surface intersection points.
Thus we can adopt the way of volume rendering SDF [7] to
volume render SRDF.

Ray

Object Object

SDF / 
SRDF

tO

Figure 1. A horizontal ray penetrating surfaces (shadowed lines),
in the case of vertical (pink) and random (blue) angle, top. SRDF
(blue) is irrelevant to the incidence angle and is equal to the SDF
where the surface is vertical to the ray (pink), bottom.

2. Global Feature Volume
Recall that we construct a global feature volume Fv to

get global information. After dividing the bounding volume
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of the scene into K3 voxels, we project the center point
of each voxel onto the feature map of each source view
and obtain the feature with bilinear interpolation. Then we
compute the mean and variance of N features for each voxel
and concatenate them as the voxel feature. Finally, we use
a 3D U-Net [5] for regularization and get the global feature
volume Fv . The pipeline is shown in Fig. 2.

Figure 2. Pipeline of constructing global feature volume. Best
viewed on a screen when zoomed in.

3. Point Cloud Reconstruction

Recall that we reconstruct the scene with both TSDF
fusion [2] and point cloud fusion. For point cloud recon-
struction, we follow the MVS method [9]. Before fusing the
depth maps, we filter out unreliable depth estimates with
geometric consistency filtering, which measures the consis-
tency of depth estimates among multiple views. For each
pixel p in the reference view, we project it with its depth
d0, to a pixel pi in the i-th source view. After retrieving its
depth di in the source view with interpolation, we re-project
pi back into the reference view, and retrieve the depth dreproj
at this location, preproj. We consider pixel p and its depth
d0 as consistent to the i-th source view, if the distances, in
image space and depth, between the original estimate and its
re-projection satisfy:

|preproj − p| < δ, |dreproj − d0|/d0 < ε, (1)

where δ and ε are two thresholds. We set δ = 1 and ε = 0.01,
which are the default parameters from MVSNet [9]. Finally,
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we accept the estimations as reliable if they are consistent in
at least Ngeo source views.

4. Generalization on ETH3D
We compare the generalization ability of SparseNeuS [4]

and our method on the ETH3D [6] benchmark. Recall that
we directly test our model, pretrained on DTU [1], on
ETH3D. For a fair comparison, we test the DTU pre-trained
SparseNeuS [4] with the same dataset settings and point
cloud reconstruction process. As shown in Fig. 6, our method
reconstructs the scenes with less noise and higher complete-
ness (fewer holes) than SparseNeuS [4]. This further demon-
strates that our method has good generalization capability
for large-scale scenes.

5. Baselines with Depth Supervision
Due to the ambiguity between appearance and geometry

in NeRF [11], recent methods [3, 8, 10] mainly add addi-
tional 3D supervision, e.g. depth and normal, into baselines
(VolSDF, NeuS) to compare with naive baselines (pixel color
loss only).

For a fair comparison, we trained a SparseNeuS model
while adding the depth loss (denoted SparseNeuSd) with de-
fault settings and the same loss coefficient as ours. Besides,
we remove depth loss in VolRecon and denote it as VolRe-
con*. VolRecon* performs slightly worse with SparseNeuS*
(2.041 v.s. 1.96) in sparse view reconstruction. We conjec-
ture the reason to be we not using a shape initialization as
SparseNeuS [4, 7]. However, SparseNeuSd still reconstructs
over-smoothed surfaces and even performs worse (4.22),
Fig. 3, while ours performs better with depth supervision.
Furthermore, we noticed that the grid-like pattern persists in
the rendered normal map due to limited voxel resolution.

Figure 3. Visualization of reconstructed mesh and rendered normal
map for SparseNeuSd. Best viewed when zoomed in.

1Chamfer distance, the lower the better, same below

6. Novel View Synthesis of VolRecon
We report novel view synthesis results on DTU dataset [1]

in Table 1, where we use the same dataset setting as full view
reconstruction and render each view with 4 source views
only. Qualitative results are shown in Fig. 4.

Method PSNR ↑ MSE ↓ SSIM ↑
Ours 15.37 0.04 0.56

Table 1. Quantitative results of novel view synthesis on DTU [1].
Each view is rendered with 4 source views only.

7. Point Cloud Visualization on DTU
We visualize all the reconstructed point clouds of the full

view reconstructions on the DTU dataset [1] in Fig. 5.
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Figure 4. Visualization of novel view synthesis. Best viewed when zoomed in.
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Figure 5. Point cloud visualization of the full view reconstructions on the DTU dataset [1]. Best viewed on a screen when zoomed in.
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Figure 6. Point cloud visualization of reconstructions on ETH3D [6] benchmark. Compared with SparseNeuS [4], our method produces
better reconstruction with less noise (e.g., ground of scene door and top of scene statue) and higher completeness (fewer holes, e.g., wall of
scene relief and relief 2). Best viewed on a screen when zoomed in.
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