
Supplementary material
CoralStyleCLIP: Co-optimized Region and

Layer Selection for Image Editing

A. Notation
X ∼ N (µ,Σ) denotes a Gaussian random vector X

with mean µ and covariance Σ, and I denotes the iden-
tity matrix. Out of the four well known latent spaces of
the StyleGAN2 [20], denoted by Z,W,W+ and S or the
StyleSpace, CORAL extensively utilizes the W+ space.
MLP abbreviates multi-layer perceptron in this paper.

For simplicity, f (l) is used to denote original features
while f∗(l) denotes edited features at each convolutional
layer of StyleGAN2. Correspondingly, I denotes the orig-
inal image and I∗ denotes the edited image. ⟨x,y⟩ repre-
sents the dot product between vectors x and y. ∥x∥2 is the
Euclidean norm of vector x. For any score, ↑ is used to de-
note that a higher value is more desirable. The definition for
↓ follows along similar lines.

B. Pseudocode for Section 3
StyleGAN2 (Section 3.1). We will first present an overview
of the StyleGAN2 [20] architecture which can be modular-
ized into three parts.

1. Mapper MLP
Z→W+

(·) from z ∈ Rd in Z space to w :=

[w(1), w(2), . . . , w(18)] ∈ R18×d inW+ space,

2. 18 learned convolutional blocks Φ(l) where l ∈
{1, 2, . . . , 18}, used as f (l) = Φ(l)(f (l−1), w(l)) emitting
features f (l) ∈ RHl×Wl×dl as outputs. Here Hl × Wl is
the resolution at which the features are generated at layer
l. In addition, a fixed pre-trained tensor f (0) := c ∈ R4×4

is learned when training the StyleGAN2 backbone network
on a dataset.

The progressive nature of StyleGAN2 architecture im-
plies that Hl ≤ Hl+1 and Wl ≤ Wl+1. In our experiments,
we also have Hl = Wl. Furthermore, layers with smaller l
synthesize coarser attributes, while the latter layers are seen
to control finer attributes, as evident in multiple figures in
our paper.

3. RGB image constructed as I =
∑

l∈L̃ RGB(l)(f (l))

where I ∈ RH×W×3 and L̃ := {2, 4, 6, . . . , 18}.

Given the latent code z ∈ N (0, I) for a particular image I ,
we can obtain the corresponding w(l) vectors by,

[w(1), w(2), . . . , w(18)] = MLP
Z→W+

(z)

after which the forward pass of the StyleGAN2 generator is
given by Algorithm 1.

Algorithm 1 StyleGAN2 forward pass

Input {w(l)}18l=1 ∈ W+ space
Output Generated image I , features {f (l)}18l=1 at every

layer
1: function FORWARD(w)
2: Set f (0) = c
3: for l ∈ {1, 2, . . . , 18} do
4: f (l) = Φ(l)(f (l−1), w(l))

5: if l ∈ L̃ then
6: I(l) = RGB(l)(f (l))
7: end if
8: end for
9: I =

∑
l∈L̃ I(l)

10: return I, {f (l)}18l=1

11: end function

Algorithm 2 StyleGAN2 blended forward pass

Input w1,w2 ∈ W+, blending masks m(l) ∈
[0, 1]Hl×Wl∀ l ∈ {1, 2, . . . , 18}

Output Generated image I

12: function BLENDEDFORWARD(w1,w2, {m(l)}18l=1)
13: ∆(l) = w

(l)
2 − w

(l)
1

14: Set f∗(0) = c
15: for l ∈ {1, 2, . . . , 18} do
16: f̂∗(l) = Φ(l)(f∗(l−1), w

(l)
1 +∆(l))

17: f̂ (l) = Φ(l)(f∗(l−1), w
(l)
1 )

18: f∗(l) = m(l) ⊙ f̂∗(l) + (1−m(l))⊙ f̂ (l)

19: if l ∈ L̃ then
20: I∗(l) = RGB(l)(f∗(l))
21: end if
22: end for
23: I∗ =

∑
l∈L̃ I∗(l)

24: return I∗

25: end function

Multi-layer feedforwarded blending (Section 3.3). Alter-
natively, if instead we have w1 := {w(l)

1 }18l=1 ∈ W+,w2 :=

{w(l)
2 }18l=1 ∈ W+, obtained as

w1 = MLP
Z→W+

(z1) w2 = MLP
Z→W+

(z2)

corresponding to two images, a blended forward pass can
be performed as described in Algorithm 2. Note that the
blended forward pass is a sophisticated non-linear spatial
interpolation mechanism between the two images generated
by z1 and z2.

CORAL (Section 3.2). Under the assumption that we can
make use of two trainable modules SEGMENTSELECTOR(·)
and CONVATTNNETWORK(·) described for segment-
selection-based and attention network-based CORAL re-



Algorithm 3 CORAL based on segment-selection
Input z ∈ N (0, I) in Z space, text prompt t
Output Loss L

26: function LOSS(z, t)
27: w := {w(l)}18l=1 = MLP

Z→W+
(z)

28: ∆ := {∆(l)}18l=1 = g(w)
29: w1 = w,w2 = w +∆
30: I, {f (l)}18l=1 = FORWARD(w1)

31: Ĩ , {f̃ (l)}18l=1 = FORWARD(w2)
32: e, {m(l)}18l=1 = SEGMENTSELECTOR(I)
33: I∗ = BLENDEDFORWARD(w1,w2, {m(l)}18l=1)

34: Loss L = Lss(I, I
∗, Ĩ, e,∆, t)

35: return L
36: end function

Algorithm 4 CORAL based on attention network
Input z ∈ N (0, I) in Z space, text prompt t
Output Loss L

37: function LOSS(z, t)
38: w := {w(l)}18l=1 = MLP

Z→W+
(z)

39: ∆ := {∆(l)}18l=1 = g(w)
40: w1 = w,w2 = w +∆
41: I, {f (l)}18l=1 = FORWARD(w1)

42: Ĩ , {f̃ (l)}18l=1 = FORWARD(w2)
43: {m(l)}18l=1 = CONVATTNNETWORK({f (l)}18l=1)
44: I∗ = BLENDEDFORWARD(w1,w2, {m(l)}18l=1)

45: Loss L = Lcan(I, I
∗, Ĩ, {m(l)}18l=1,∆, t)

46: return L
47: end function

spectively in Section 3.2, we can compute the loss func-
tions in both settings. In the case of segment selection, we
use a pre-trained frozen segmentation network and a matrix
e. The matrix e ∈ [0, 1]P×18 is used to model the selection
strength of each image segment, where P is the number of
semantic segments predicted by the pre-trained segmenta-
tion network. In the case of the attention network, we em-
ploy a convolution network at each layer of StyleGAN2.
More details about the network architecture are described
in Appendix D.

The function g(w) is used to represent the latent edit di-
rection which could either be a global direction or an output
from a non-linear latent mapper. Finally, the only param-
eters optimized for minimizing the loss L are e in segment
selection, the parameters of the convolutional attention net-
work for CORAL based on attention network, and finally,
those of the latent edit predictor g(·) or ∆ in both variants
of CORAL.

input
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Figure 8 Results with and without additional CLIP loss

C. CLIP loss for semantic alignment

In Figure 8, we see that the additional DCLIP(Ĩ , t) loss in
(2) is essential for obtaining high-quality edits. In particu-
lar, for the text prompt blue eyes, we see that without this
loss, there are unwanted white patches near the chin in the
first row and second column, and the expression of the face
is also affected. In the second row, the glasses are removed,
and the complexion becomes fairer, thus affecting unrelated
attributes.

With DCLIP(Ĩ , t), however, the edits are more precise,
and only the eye region is affected. This is happening be-
cause the image corresponding to w2 in Algorithm 2 is also
explicitly driven to be semantically aligned with the text
prompt t and therefore provides a better reference image
for guiding the interpolation.

D. Architecture diagram

In Figure 9, we present the architecture diagram of
CoralStyleCLIP with all components. In this paper, we
demonstrated CORAL with four different variants. We
demonstrated two approaches for predicting CORAL masks
- segment selection and convolutional attention network.
We also demonstrated results on two different variations of
the latent direction - global direction ∆ and latent mapper
network g(·). Therefore, in total, we have four combina-
tions of CORAL variants. For segment selection, we have
a matrix e, which is used to modulate the weights of each
image segment. In the case of the Convolutional Attention
Network, we employ a CNN at each layer of the StyleGAN
network. Architecture details of the network are mentioned
in Section 4 of the main paper.
Latent Mapper: As also discussed in Section 3.4, the latent
mapper g(·) is an MLP-based model along the lines of [36,
Section 5], where the w(l) are split into three groups: coarse



Table 2 Metrics for Text Prompt - Blue eyes
ID (↑) LPIPS (↓) MS-SSIM (↑) L2 (↓)

SS Global 0.776 0.0160 0.972 0.0029
SS Mapper 0.799 0.0082 0.969 0.0023

AttnNet-Global 0.868 0.0067 0.988 0.0015
AttnNet-Mapper 0.896 0.0060 0.989 0.0012

StyleCLIP 0.741 0.0856 0.871 0.0265
StyleMC 0.522 0.1670 0.596 0.2550
FEAT∗ 0.904 0.0017 0.997 0.0004

Table 3 Metrics for Text Prompt - Happy
ID (↑) LPIPS (↓) MS-SSIM (↑) L2 (↓)

SS Global 0.633 0.0313 0.935 0.0080
SS Mapper 0.651 0.0308 0.933 0.0084

AttnNet-Global 0.830 0.0136 0.961 0.0050
AttnNet-Mapper 0.847 0.0155 0.959 0.0053

StyleCLIP 0.644 0.0904 0.835 0.0301
StyleMC 0.821 0.0244 0.940 0.0080
FEAT∗ 0.846 0.0150 0.957 0.0064

Table 4 Metrics for Text Prompt - Mohawk hairstyle
ID (↑) LPIPS (↓) MS-SSIM (↑) L2 (↓)

SS Global 0.828 0.1980 0.756 0.0760
SS Mapper 0.882 0.0970 0.868 0.0303

AttnNet-Global 0.945 0.0849 0.919 0.0289
AttnNet-Mapper 0.922 0.0971 0.899 0.0337

StyleCLIP 0.522 0.2940 0.597 0.1530
StyleMC 0.651 0.0704 0.898 0.0180
FEAT∗ 0.953 0.0746 0.924 0.0236

Table 5 Metrics for Text Prompt - Surprised
ID (↑) LPIPS (↓) MS-SSIM (↑) L2 (↓)

SS Global 0.747 0.0173 0.972 0.0037
SS Mapper 0.519 0.0412 0.902 0.0122

AttnNet-Global 0.819 0.0167 0.973 0.0035
AttnNet-Mapper 0.654 0.0297 0.927 0.0092

StyleCLIP 0.633 0.1390 0.765 0.0496
StyleMC 0.602 0.0952 0.728 0.0713
FEAT∗ 0.719 0.0252 0.938 0.0088

(l in 1 to 4), medium (l in 5 to 8) and fine (l in 9 to 18);
and each of these groups is processed by a different MLP.
Our latent mapper network consists of four BiEqual linear
layers followed by a multi-layer perceptron. Each BiEqual
layer consists of two MLPs followed by a LeakyReLU [49]
activation function and a differencing operation (Figure 9).

E. Additional experiment details
We provide the hyperparameters used for training Coral-

StyleCLIP for making edits to images generated by a Style-
GAN trained on the FFHQ dataset. Note that for both seg-
ment selection and attention network, the user can poten-
tially decrease the λid by 20-40% depending on how likely
the prompt is to make any edit to the facial region. This is
essential for text prompts such as kid, elderly, and asian,
where the transformation can alter the identity of a person
significantly.
Segment selection: For experiments based on global di-
rections (Segment Selection - Global Direction), we set

λl2 = 0.0007, λid = 0.015, λarea = 0.10, whereas for la-
tent mapper based edits (Segment Selection - Mapper), we
set λl2 = 0.0002, λid = 0.020, λarea = 0.08.
Attention network: For experiments based on global direc-
tions (Attention Network - Global Direction) we set λl2 =
0.0009, λid = 0.08, λarea = 0.00009, λtv = 0.00003,
whereas for latent mapper based edits (Attention Network
- Mapper), we set λl2 = 0.0006, λid = 0.08, λarea =
0.00002, λtv = 0.00003

In Section F.2, Section F.3 and Section F.4, we also
present results for attention network-based CORAL with la-
tent mapper edits. For the Stanford cars dataset, λl2 is set
to 0.0002 while keeping other hyperparameters the same.
For the remaining two domains, which are adaptations of
FFHQ, λl2 is set to 0.0004.

F. Additional results
In addition to presenting results for editing images using

CoralStyleCLIP on the FFHQ dataset [19] (see Figure 10),
we also demonstrate the benefits of our method for the Stan-
ford Cars dataset [24] (see Figure 11), and for face genera-
tors which were adapted to the following domains: sketch,
and pixar (see Figure 12 and Figure 13 respectively), using
StyleGAN-NADA [13].

For experiments other than those with FFHQ, we disable
the ID loss Lid. Nonetheless, we do observe high-fidelity
edits in these settings as well. Also note that as mentioned
in Section 4, for l > 13, we set the masks m(l) = 0 for
CoralStyleCLIP.

F.1. FFHQ [19]

In Figure 10, we present more examples where Coral-
StyleCLIP executes a range of edits for human faces with
high precision and minimal hand-holding. We choose a va-
riety of text prompts that demand challenging structural and
color edits. These results show that our method can accu-
rately select the correct region and layer.

F.2. Cars [24]

We trained CoralStyleCLIP based on convolutional at-
tention network and the latent mapper edit for the 512 ×
512 size StyleGAN2 model trained on Stanford Cars
dataset [24] available from [6]. For text prompts classic,
sports, and yellow car, we observe that only the car is edited
while the background is not selected in Figure 11. Further-
more, we also observe that CoralStyleCLIP automatically
selects earlier layers for executing the first two prompts
while it utilizes the latter layers to change the car’s color. It
is also interesting to note that the network generally selects
layer 8 for wheel modification while it selects layers 5-7 for
editing the car’s body. This indicates that the car’s wheels
will likely have a more significant structural disentangle-
ment and edit flexibility in layer 8. Furthermore, for yellow
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Figure 9 Architecture diagram of CoralStyleCLIP. Segment selection network consists of a pre-trained segmentation network and matrix e. The weights
of each segment are modulated to produce a CORAL mask. Convolutional attention network consists of a CNN which predicts the CORAL mask at each
layer of StyleGAN. The CORAL mask can either come from Segment selection or Convolutional Attention Network. Latent direction can either come
from the learnt global direction ∆ or via a mapper g(·) at each layer of CoralStyleCLIP. The layers of CoralStyleCLIP blend the features using the mask
and latent direction (See Suppl. Pseudocode). There are three g(·) modules for coarse (l ∈ [1, 4]), medium (l ∈ [5, 8]) and fine layers (l ∈ [9, 18]) each. In
this figure, the result of mohawk hairstyle used a convolutional attention network and global direction.

car, CORAL prioritizes the car’s body over the wheels and
windows. We see that the car’s color remains preserved for
classic car and sports car.

F.3. Sketch [13]

We trained CoralStyleCLIP based on convolutional at-
tention network and the latent mapper edit for a Style-
GAN that was pre-trained on FFHQ [19], and then domain
adapted to sketches using StyleGAN-NADA [13]. For both
prompts kid and frown, we see that CORAL successfully
identifies the appropriate regions and layers for editing and
executes them in Figure 12. In the case of kid, the net-
work selects the facial region, and in frown, the network
selects the eyes and mouth regions. Similar to the observa-
tion made in Cars subsection above (Section F.2), the net-
work selects layer 8 for structural changes to the eyes and
selects other layers for making facial edits to achieve frown.

F.4. Pixar [13]

Along the lines of Section F.3, in Figure 13, we also
apply edits corresponding to glasses and scared for Style-
GAN2 generated images adapted for the pixar domain using
StyleGAN-NADA [13].

While the glasses emerge from layers 1 to 4, leaving
other attributes undisturbed, scared affects both the eyes
and mouth regions, their corresponding edits emerging from
layers 5 and 8, respectively. In both cases, the edits are
primarily structural and executed through the earlier layers.
These results demonstrate that CoralStyleCLIP can deter-
mine the correct regions to edit at the correct set of Style-
GAN2 layers with minimal hand-holding.

F.5. Additional quantitative results (Table 2 to 5)

In Table 1, we observed that CORAL edits on human
faces achieve a reasonable Clean-FID [35], thereby preserv-
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Figure 10 Additional results on FFHQ [19] generated images.
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Figure 11 Additional results on Cars [24] generated images.
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Figure 12 Additional results on Sketch [13] generated images.

ing the realism of the edited images.

We also compare CORAL for a StyleGAN2 trained on
FFHQ with our baselines across the four text prompts from
Table 1 based on other quantitative metrics. In particular,
we compute the identity similarity (ID) based on the cosine
similarity between ArcFace embeddings [11], LPIPS [53]
distance, MS-SSIM [46] score and the pixel-wise Euclidean
distance, between each edited image and the original.

For comparison with FEAT [16], we only compare
CORAL with results from our reimplementation FEAT∗

7 for

happy, mohawk and surprised, and FEAT∗
13 for blue eyes

so that the edits do occur with high precision. On average,
the ID is higher in Table 2 and Table 4 as compared to Ta-
ble 3 and Table 5. This is because edits to the facial regions,
such as the mouth and eyes, diminish the facial recognition
capabilities of ArcFace [11].

In general, CORAL, based on the attention network, has
higher similarity and lower dissimilarity scores than the
segment-selection-based methods, which can be attributed
to higher precision in the region of interest selection at ev-
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Figure 13 Additional results on Pixar [13] generated images.

ery layer of the generator. However, the same cannot be
said for StyleCLIP and StyleMC, which affect irrelevant re-
gions, consequently underperforming CORAL and FEAT.

G. CORAL v/s multi-layer FEAT
CORAL method applies the proposed feedforwarded

feature blending strategy at each of the StyleGAN layers
(Section 3.3). On similar lines, an interesting and a direct
extension of FEAT would be to apply their proposed fea-
ture blending strategy at every StyleGAN layer. The re-
sulting method, which we refer to as “multi-layer FEAT”,

would have a similar high level architecture with two paral-
lel pathways but would differ in the blending strategies (Fig-
ure 14). In the case of the multi-layer FEAT, the blended
features would be propagated through the edited pathway
(w+∆) while the original features would continue to prop-
agate through the original unedited (w) pathway. In other
words, the FEAT blending strategy draws relevant edits
from a particular layer and learns to discard edits from
all the previous layers. Therefore, multi-layer FEAT can-
not propagate the edits effectively. However, in the case
of CORAL, blended features are passed parallelly to both
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Figure 14 FEAT vs Multi-layer FEAT vs CORAL

pathways (Section 3.3). As a result, CORAL can discard ir-
relevant edits at the current layer and propagate the updated
edits effectively.

H. Future applications
The edits outside the regions of interest are explicitly pre-
vented by the feed-forwarded blending strategy proposed in
Section 3.3. As a result, methods such as [4, 16, 17, 23, 27,
36] could directly benefit from applying our strategy for in-
ference with separately constructed masks.

Furthermore, the synergy between the co-optimized re-
gion and layer selection (CORAL) in Section 3.2 and the
feed-forwarded blending may provide increased control to
content designers who may find it easier to refine an accu-
rate initial predicted region of interest.
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