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Figure 1. Qualitative analysis of similar-sized representations. Ev-
ery method was quantized to 8 bits and less than 1 MB.

1. Qualitative Comparison

In this section, we visually demonstrate the qualities of
neural fields with similar sizes. Fig. 1 shows the qualita-
tive results of similar-sized representations: TensoRF-CP-
384, NeRF, and Ours (λm=1e-10). The bit precision of each
model was set to 8 bits. Even though they have similar over-
all sizes (less than 1 MB), ours shows the best qualitative
results.

2. Computational Costs

We also present the computational costs, particularly in
terms of time, because we introduced learnable masks and
DWT for efficient scene representation. First of all, as

*Equal contribution
†Corresponding authors

No Mask Mask
Spatial ≈ 8 min ≈ 9 min

1-level DWT ≈ 13 min ≈ 14 min
2-level DWT ≈ 15 min ≈ 17 min
3-level DWT ≈ 18 min ≈ 20 min
4-level DWT ≈ 23 min ≈ 24 min

Table 1. Approximate training time

we explained in the main paper, we can ignore the com-
putational costs at inference time. However, those two
components incur non-negligible training time during train-
ing time. Tab. 1 shows the approximate training time to
train a network (VM-192). It was evaluated using a 40
GB memory-equipped Tesla A100. Introducing masks in-
creases the training time, but by a relatively insignificant
amount of time. On the other hand, DWT increases train-
ing time more significantly. We believe that the increased
training time is due to two factors: additional computational
costs caused by DWT and not fully optimized DWT codes.
As a result, we believe future DWT code optimization can
help close this training time gap, especially given that cur-
rent codes lower the GPU utilization rate from 80% (base-
line) to 50% (4-level DWT with mask). Nevertheless, the
time required by our proposed method is still far less than
that of neural fields that exclusively use MLP, such NeRF.

3. Comparison on Masking Method

We also compared our masking method with a threshold-
based pruning approach that removes grid coefficients
whose absolute values are below a threshold τ . As Tab. 2
shows, ours is more parameter-efficient than the threshold-
based pruning method. It further supports the effectiveness
of our proposed masking method in improving efficiency.
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Methods Sparsity PSNR
Abs. Thres. (τ=0.5) 0.8554 32.33
Abs. Thres. (τ=1.0) 0.9385 28.95
Abs. Thres. (τ=1.6) 0.9747 21.40
Ours (λm=2.5e-11) 0.9376 32.24
Ours (λm=1.0e-10) 0.9769 31.95

Table 2. Pruning on NeRF Synthetic dataset. The threshold of the
absolute value-based method (Abs. Thres.), is denoted as τ .

4. Ablation Studies on Mask Compression

In this section, we analyze our proposed compression
pipeline in more detail by demonstrating the compression
ratio at each stage and outlining the rationale for our de-
sign decisions. Tab. 3 shows the compression ratios in the
NeRF dataset. By incrementing each step, we demonstrate
how each step contributes to the compression ratio. Keep
in mind that we do not compress non-zero coefficients; we
only compress information regarding which coefficients are
non-zero (mask). We keep the non-zero coefficients that are
not compressed as well as the compressed mask that shows
where the non-zero components are located.

Run-length encoding (RLE) The RLE is effective for
compressing data with repeating numbers. Instead of en-
coding raw repeating numbers, RLE encodes repeating
numbers as a pair of the number and its count. This is
why we adopt RLE in our mask compression pipeline. Our
proposed method zeros out most grid coefficients. More
specifically, by adopting our proposed method, the sparsity
of grids can go up to 90% or even 99%. As shown in the
second row of Tab. 3, adopting RLE can reduce the mask
size by a factor of 1.75, on average.

Huffman encoding As shown in the third row of Tab. 3,
we can raise the compression ratio to 4.62 by including
Huffman encoding in our compression pipeline. We also
compared adaptive arithmetic coding [3] with Huffman en-
coding but did not observed meaningful improvements. As
a result, we chose to use the less expensive Huffman encod-
ing in our compression pipeline. We believe, however, that
further improvements could be made by incorporating ad-
vanced compression techniques into the proposed method.

8-bit casting Packing the binarized mask values by 8 bits
before applying RLE can further increase the compression
ratio to 6.24 (Tab. 3). This is because the casting makes the
length of the RLE code much shorter. For example, con-
sider a thousand 0s. Without casting, we can represent a
thousand 0s with three (0, 255) and one (0, 235). On the
other hand, with the help of casting, we only need a pair of
two numbers (0, 125). We use this method assuming most
elements are zeros, and as shown in the table, it can really
improve compression ratio.

Level-wise encoding We discovered that sparsity highly

depends on the level of DWT, as shown in Tab. 5. More
specifically, high-pass coefficients have higher sparsity.
Based on the findings, we separate the mask at each level
and compress separately. For the last level of DWT, we treat
the upper left part (LL) and the remaining three parts (LH,
HL, HH, also known as precincts) separately, as the former
has much fewer zeros compared to the latter. As shown in
Tab. 3, adding the level-wise encoding into the pipeline im-
proves the compression ratio even further, resulting in an
average size of 0.28 mb, which is 7.39 times smaller than
the size of the original mask.

Scanning order Since scanning order before compres-
sion can affect the output size, we also tried different scan-
ning orders and measure the output sizes. Tab. 6 shows the
results on the NeRF synthetic dataset. As shown, scanning
order did not affect the performance noticeably.

5. Application to Other 2D Grid-based Neural
Fields

Even though we only showed results using a TensoRF [2]
model (VM-192), our proposed method is not confined to
TensoRF. Only TensoRF was used in the main paper be-
cause it is currently the most effective method for plane-
based neural fields.

To demonstrate that our method can be used with any
grid-based neural representation, we apply it to additional
plane-based neural fields in this section. We exclusively
employed 2D grids, not 1D grids, as plane-based neural
fields. This was only intended to demonstrate that our sug-
gested method can be used with other 2D grid-based meth-
ods in addition to TensoRF. TriPlane from EG2D [1] served
as the model for this design, which uses only 2D planes.
The difference is that, like TensoRF, we separate the grids
for density and appearance. For implementation, we re-
moved 1D grids from the baseline model we used in the
main paper.

As shown in Tab. 4, our proposed method can be success-
fully applied to other 2D grid-based representations and re-
move most of the coefficients without causing considerable
quality degradation. When λm was set to 5e-11, our pro-
posed method reduced the size to less than 7% of its origi-
nal size with negligible quality drops (0.17 drops measured
in PSNR).

6. Color Estimation in Detail
Following TensoRF [2], we use separate grids for den-

sity and appearance (color) estimation. In this section,
we describe appearance grids in detail. Similar to den-
sity grids, we use three 2D matrices and three vectors,
ϕc = {Wx

c,r,Wy
c,r,Wz

c,r, v
x
c,r, v

y
c,r, v

z
c,r}

Nc,r

r=1 (c denotes
color, and we will omit the subscript c for brevity from now
on). Nr is the number of ranks in matrix-vector decompo-
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Lv. wise. 8-bit. RLE Huffman Avg Chair Drums Ficus Hotdog Lego Materials Mic Ship
2.07 1.96 2.01 2.07 2.24 1.99 2.37 1.91 2.02√

1.19 (1.75) 1.39 (1.41) 1.58 (1.27) 1.47 (1.41) 0.70 (3.21) 1.08 (1.84) 1.46 (1.62) 0.73 (2.62) 1.08 (1.87)√ √
0.45 (4.62) 0.52 (3.75) 0.59 (3.38) 0.55 (3.74) 0.26 (8.49) 0.41 (4.82) 0.55 (4.32) 0.28 (6.78) 0.41 (4.89)√ √ √
0.33 (6.24) 0.40 (4.88) 0.42 (4.41) 0.42 (4.93) 0.18 (12.71) 0.31 (6.48) 0.39 (6.05) 0.20 (9.50) 0.30 (6.68)√ √ √ √
0.28 (7.39) 0.36 (5.47) 0.35 (5.60) 0.35 (5.91) 0.16 (13.92) 0.26 (7.61) 0.34 (6.97) 0.16 (12.13) 0.26 (7.88)

Table 3. The mask size and compression ratio at each stage of the compression pipeline evaluated on the NeRF synthetic dataset. Each
number is in megabytes, and the number inside parenthesis indicates the compression ratio. RLE and Huffman indicate run-length and
Huffman encoding, respectively. Level-wise encoding and 8-bit casting are denoted as “Lv. wise.” and “8-bit.”. The first row shows the
original binarized mask size.

Methods size(MB) Avg Chair Drums Ficus Hotdog Lego Materials Mic Ship
Baseline 14.41 28.52 31.83 22.81 23.06 35.50 29.67 27.31 30.87 27.10

Ours (λm=1e-10) 0.71 27.91 30.69 23.18 23.22 33.18 38.85 27.09 30.29 26.79
Ours (λm=5e-11) 0.98 28.35 30.89 23.39 23.30 34.65 29.19 27.36 30.696 27.03

Ours (λm=2.5e-11) 1.38 28.39 31.07 23.18 23.27 34.78 29.18 27.44 31.05 27.14

Table 4. The performance of our proposed method with the tri-planar architecture on the NeRF synthetic dataset. Reconstruction quality
was measured in PSNR. By setting λm to 5e-11, our proposed method compresses the baseline model 14.70 times without significant
PSNR loss.

Plane Lv. 1 Lv. 2 Lv. 3 Lv. 4 (precinct) Lv. 4 (upper-left)

Density
YX 0.99 0.97 0.91 0.76 0.33
ZX 0.99 0.96 0.91 0.82 0.36
ZY 0.99 0.97 0.93 0.84 0.43

Appearance
YX 0.97 0.94 0.90 0.80 0.61
ZX 0.98 0.96 0.93 0.87 0.63
ZY 0.99 0.98 0.95 0.91 0.73

Table 5. Sparsity table of 4-level DWT with learnable mask
(λm=1e-10) on Chair (from the NeRF dataset).

no scan zigzag morton spiral
Size (MB) 0.83 0.83 0.85 0.83

Table 6. Average size by scanning order on the NeRF synthetic
dataset.

sition and Wx
r ∈ RH×W , Wy

r ∈ RW×D, Wz
r ∈ RH×D are

matrices, vxr ∈ RD, vyr ∈ RH , vzr ∈ RW , are vectors in
x, y, z directions, respectively. H,W,D denote the resolu-
tion of the grid. We employ DWT only over matrices, just
as we did over density grids. Thus, W are wavelet coeffi-
cients, and v are feature vectors in the spatial domain.

Density grids in TensoRF only generate a density value,
while color grids generate a feature vector for each coordi-
nate. These feature vectors are forwarded to MLP to esti-
mate the colors. To extract a feature vector per coordinate,
TensoRF uses additional vectors (fx, fy , fz). More for-
mally, a 3D grid representation Gc can be defined as fol-
lows.

Gc =

Nr∑
r=1

∑
d∈{x,y,z}

vdr ⊗ idwt(Wd
r )⊗ fd

r , (1)

where ⊗ denotes the outer product and idwt(·) is a two-
dimensional inverse discrete wavelet transform.

7. Per-Scene Results
In this section, we provide quantitative and qualitative

results of each scene from NeRF synthetic, NSVF synthetic,
TanksAndTemples, and LLFF dataset. Tabs. 7 to 10 show
the quantitative results and Figs. 2 to 5 show the qualitative
results on the four datasets.
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Methods size(MB) Avg Chair Drums Ficus Hotdog Lego Materials Mic Ship
KiloNeRF ◦ ≤ 100 31.00 32.91 25.25 29.76 35.56 33.02 29.20 33.06 29.23

CCNeRF (CP) ◦ 4.4 30.55 - - - - - - - -
NeRF ∗ 1.25 31.52 33.82 24.94 30.33 36.70 32.96 29.77 34.41 29.25
cNeRF • 0.70 30.49 32.28 24.85 30.58 34.95 31.98 29.17 32.21 28.24
PREF ∗ 9.88 31.56 34.55 25.15 32.17 35.73 34.59 29.09 32.64 28.58

VM-192 ∗ 17.93 32.91 35.64 25.98 33.57 37.26 36.04 29.87 34.33 30.64
VM-48 ∗ 4.81 32.18 34.54 25.55 33.12 36.60 35.14 29.15 33.33 29.99
CP-384 ∗ 0.72 31.18 33.49 25.11 29.86 35.97 33.26 29.56 33.56 28.59

VM-192 (300) + Ours ∗

λm=1e-10 0.83 31.95 34.14 25.53 32.87 36.08 34.93 29.42 33.48 29.15
λm=5e-11 1.16 32.13 34.52 25.66 33.03 36.20 35.16 29.58 33.68 29.19
λm=2.5e-11 1.69 32.24 34.68 25.56 33.17 36.37 35.50 29.56 33.74 29.34

VM-192 (500) + Ours ∗

λm=1e-10 1.02 32.14 34.64 25.55 33.04 35.85 35.15 29.54 33.91 29.41
λm=5e-11 1.55 32.37 34.90 25.69 33.25 36.13 35.50 29.63 34.21 29.65
λm=2.5e-11 2.36 32.46 35.16 25.77 33.34 36.26 35.74 29.65 34.19 29.57

VM-384 (300) + Ours ∗

λm=1e-10 0.99 32.08 34.32 25.50 33.28 36.22 34.83 29.91 33.36 29.20
λm=5e-11 1.50 32.23 34.59 25.55 33.41 36.35 35.13 29.95 33.47 29.42
λm=2.5e-11 2.42 32.38 34.84 25.58 33.59 36.66 35.46 29.94 33.56 29.43

VM-384 (500) + Ours ∗

λm=1e-10 1.23 32.36 34.85 25.75 33.49 36.05 35.11 29.86 34.16 29.65
λm=5e-11 2.03 32.66 35.35 25.75 33.71 36.55 35.69 29.91 34.46 29.89
λm=2.5e-11 3.36 32.77 35.49 25.78 33.78 36.79 35.85 29.94 34.56 30.01

Table 7. Performance on the NeRF synthetic dataset measured in PSNR. The performance of the 32-bit and 8-bit models described in the
original paper are represented by the symbols ◦ and •, respectively. ∗ denotes the performance of a quantized model with 8-bit precision.
The number inside the parenthesis denotes the resolution of one axis of grids.

Methods size(MB) Avg Bike Lifestyle Palace Robot Spaceship Steamtrain Toad Wineholder
KiloNeRF ◦ ≤ 100 33.37 35.49 33.15 34.42 32.93 36.48 33.36 31.41 29.72
VM-192 ∗ 17.77 36.11 38.69 34.15 37.09 37.99 37.66 37.45 34.66 31.16
VM-48 ∗ 4.53 34.95 37.55 33.34 35.84 36.60 36.38 36.68 32.97 30.26
CP-384 ∗ 0.72 33.92 36.29 32.29 35.73 35.63 34.58 35.82 31.24 29.75

VM-192 (300) + Ours ∗

λm=1e-10 0.87 34.67 37.06 33.44 35.18 35.74 37.01 36.65 32.23 30.08
λm=5e-11 1.25 34.95 37.33 33.69 35.65 36.01 37.23 36.95 32.58 30.14
λm=2.5e-11 1.88 35.11 37.49 33.75 35.94 36.23 37.45 36.92 32.87 30.23

VM-192 (500) + Ours ∗

λm=1e-10 1.06 35.02 37.09 33.57 35.85 36.53 37.18 36.75 32.71 30.45
λm=5e-11 1.66 35.41 37.53 33.77 36.43 36.99 37.37 37.14 33.35 30.71
λm=2.5e-11 2.63 35.63 37.70 33.96 36.86 37.15 37.60 37.26 33.77 30.71

VM-384 (300) + Ours ∗

λm=1e-10 1.04 35.04 37.72 33.68 35.55 36.18 37.52 36.85 32.48 30.39
λm=5e-11 1.61 35.33 38.04 33.89 36.03 36.48 37.81 37.10 32.88 30.43
λm=2.5e-11 2.69 35.57 38.27 34.09 36.37 36.81 37.93 37.24 33.22 30.59

VM-384 (500) + Ours ∗

λm=1e-10 1.27 35.45 37.89 33.80 36.28 36.89 37.70 37.13 33.03 30.91
λm=5e-11 2.17 35.84 38.20 34.05 36.92 37.35 37.91 37.45 33.58 31.23
λm=2.5e-11 3.77 36.13 38.53 34.26 37.32 37.71 38.15 37.73 34.08 31.27

Table 8. Performance on the NSVF synthetic dataset measured in PSNR. The performance of the 32-bit models described in the original
paper are represented by the symbols ◦. ∗ denotes the performance of a quantized model with 8-bit precision. The number inside the
parenthesis denotes the resolution of one axis of grids.
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Figure 2. Qualitative results on the NeRF synthetic dataset.
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Figure 3. Qualitative results on the NSVF dataset.
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Methods size(MB) average Barn Caterpillar Family Ignatius Truck
KiloNeRF ◦ ≤ 100 28.41 27.81 25.61 33.65 27.92 27.04

CCNeRF (CP) ◦ 4.4 27.01 - - - - -
VM-192 ∗ 17.82 28.55 27.25 26.18 33.86 28.37 27.11
VM-48 ∗ 4.52 28.06 26.77 25.46 33.06 28.24 26.77
CP-384 ∗ 0.72 27.56 26.73 24.69 32.31 27.83 26.23

VM-192 (300) + Ours ∗

λm=1e-10 0.92 27.77 26.49 25.50 32.57 28.06 26.21
λm=5e-11 1.27 27.83 26.71 25.34 32.74 28.11 26.27
λm=2.5e-11 1.91 27.92 26.72 25.39 32.92 28.22 26.34

VM-192 (500) + Ours ∗

λm=1e-10 1.14 27.92 26.89 25.52 32.79 28.18 26.22
λm=5e-11 1.76 28.01 26.97 25.40 33.03 28.23 26.42
λm=2.5e-11 2.77 28.04 27.05 25.34 33.18 28.21 26.43

VM-384 (300) + Ours ∗

λm=1e-10 1.13 28.01 26.94 25.75 32.72 28.22 26.43
λm=5e-11 1.69 28.12 27.02 25.81 32.92 28.31 26.54
λm=2.5e-11 2.75 28.12 27.00 25.80 33.09 28.23 26.47

VM-384 (500) + Ours ∗

λm=1e-10 1.42 28.14 27.41 25.78 32.91 28.11 26.48
λm=5e-11 2.43 28.27 27.47 25.89 33.14 28.36 26.49
λm=2.5e-11 4.15 28.30 27.39 25.79 33.33 28.32 26.69

Table 9. Performance on the Tanks&Temples synthetic dataset measured in PSNR. The performance of the 32-bit models described in the
original paper are represented by the symbols ◦. ∗ denotes the performance of a quantized model with 8-bit precision. The number inside
the parenthesis denotes the resolution of one axis of grids.

Methods size(MB) Avg Fern Flower Fortress Horns Leaves Orchids Room T-Rex
cNeRF • 0.96 26.15 25.17 27.21 31.15 27.28 20.95 20.09 30.65 26.72
PREF ∗ 9.34 24.50 23.32 26.37 29.71 25.24 20.21 19.02 28.45 23.67

VM-96 ∗ 44.72 26.66 25.22 28.55 31.23 28.10 21.28 19.87 32.17 26.89
VM-48 ∗ 22.40 26.46 25.27 28.19 31.06 27.59 21.33 20.03 31.70 26.54
CP-384 ∗ 0.64 25.51 24.30 26.88 30.17 26.46 20.38 19.95 30.61 25.35

VM-96 (640) + Ours ∗

λm=1e-10 1.34 25.88 24.98 27.19 30.28 26.96 21.21 19.93 30.03 26.45
λm=5e-11 2.10 26.15 24.99 27.77 30.60 27.25 21.18 19.90 30.65 26.84
λm=2.5e-11 3.20 26.25 25.05 27.94 30.75 27.48 21.08 19.76 31.19 26.77

VM-96 (1000) + Ours ∗

λm=1e-10 1.75 25.82 24.97 27.44 30.29 26.92 21.11 20.09 29.27 26.47
λm=5e-11 3.01 26.17 25.05 27.70 30.71 27.29 21.09 20.01 30.91 26.62
λm=2.5e-11 4.76 26.30 25.08 27.76 30.89 27.49 21.14 19.99 31.23 26.85

VM-192 (640) + Ours ∗

λm=1e-10 1.73 25.98 25.18 27.47 29.66 27.47 21.11 19.71 30.47 26.79
λm=5e-11 3.01 26.46 25.12 28.16 30.81 27.88 21.07 19.77 31.61 27.28
λm=2.5e-11 5.04 26.53 25.05 28.15 30.99 28.09 20.97 19.75 31.85 27.40

VM-192 (1000) + Ours ∗

λm=1e-10 2.43 26.15 25.18 27.74 30.22 27.47 21.24 19.98 30.56 26.79
λm=5e-11 4.57 26.43 25.22 28.06 30.78 27.71 21.23 19.92 31.61 26.93
λm=2.5e-11 7.41 26.54 25.27 28.20 31.01 27.88 21.17 20.02 31.73 27.07

Table 10. Performance on the LLFF dataset measured in PSNR. The performance of the 8-bit models described in the original paper are
represented by the symbol •. ∗ denotes the performance of a quantized model with 8-bit precision. The number inside the parenthesis
denotes the resolution of one axis of grids.
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Figure 4. Qualitative results on the Tanks&Temples dataset.
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Figure 5. Qualitative results on the LLFF dataset.
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