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1. Introduction

We provide some additional material in support of the
main paper. The content is organised as follows:

• Sec. 2 provides a description of the proposed datasets
for the evaluation of NCD methods for point cloud se-
mantic segmentation;

• Sec. 3 reports the implementation details of EUMS†,
our adaptation for 3D point cloud data of the method
proposed by Zhao et al. [5] (originally designed for
NCD in 2D image semantic segmentation);

• Sec. 4 shows a collection of additional qualitative re-
sults produced with NOPS on all the different splits of
SemanticPOSS-ni and SemanticKITTI-ni.

2. Dataset splits for 3D NCD

To evaluate the performances of NOPS, we divide Se-
manticKITTI [1] and SemanticPOSS [2] into four differ-
ent splits. We name these splits as SemanticKITTI-ni and
SemanticPOSS-ni, respectively, where n is the number of
novel classes contained in each split and i indexes the split.
In each set, the novel classes and the base classes corre-
spond to unlabelled and labelled points. These splits are
selected based on two principles, i.e. balancing the distri-
bution of the novel classes in each split, and including se-
mantic relationships between base and novel classes within
the same split. See details about the splits in Fig. 1. The
first principle allows us to avoid the case in which the most
frequent novel class affects the other classes, thus in turn
affecting the learning of the unsupervised points. The sec-
ond principle encourages the model to exploit the super-
vised knowledge over some base classes to discover the un-
supervised novel classes, as in the case of the novel class
rider in SemanticPOSS-33, whose discovery can be facili-
tated by the presence of the class bike, that is considered as
base class in this specific split.
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Figure 1. Histograms representing the number of points belonging
to each class in SemanticKITTI [1] and SemanticPOSS [2]. Each
class has been assigned the colour of the split in which it has to be
considered novel (unlabelled).

3. Adapting NCD for 2D images to 3D

One of our contribution is the adaptation of EUMS [5],
proposed for NCD in 2D image semantic segmentation, to
3D data. As some of the EUMS assumptions for the 2D
case do not hold in the 3D point cloud domain, we intro-
duce some changes in the proposed baseline. We name this
adapted version as EUMS†.
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Figure 2. Overview of EUMS†, our adaptation of the method proposed by Zhao et al. [5]. We first pre-train fξ and fb considering only
the base points in each point cloud. Using fξ, we extract the features of the novel points in each scene, that are filtered with the selection
function Ψ(·). Then, we produce the pseudo-labels for the selected novel points by using the k-means algorithm. Lastly, we plug a new
segmentation head fc into fξ and fine-tune the complete model on both novel and base points, considering pseudo-labels and ground-truth
labels respectively.

As in the original implementation, EUMS† consists of
three consecutive steps: i) pre-training, ii) pseudo-labelling
and iii) fine-tuning. The block diagram of EUMS† is il-
lustrated in Fig. 2. We first pre-train our model fξ ◦ fb on
the base classes only, where fξ is the feature extractor, fb
is the segmentation head for the base classes and ◦ is the
composition operator. Then, we generate the pseudo-labels
considering the features extracted by fξ and filtered with the
selection function Ψ(·) working on the whole dataset, where
Ψ is a random selection function. Lastly, we fine-tune the
architecture fξ◦fc jointly on the labelled base points and on
the pseudo-labelled novel points, where fc is the segmenta-
tion head for both base and novel classes. Here below each
step is described in detail.

Pre-training. EUMS assumes that the novel classes be-
long to the foreground. Then, the novel classes are merged
with the background class (considered as base in all the
dataset splits) during the pre-training phase. The fore-
ground pixels are obtained by an auxiliary saliency detec-
tion model [3]. The background pixels are just the output
of the pre-trained model. The portion of the image be-
longing to both the foreground and the background masks
contains the novel pixels. Because in point clouds there is
no concept of foreground/background and saliency for 3D
data cannot be leveraged as easily as for 2D data [4], we
consider the novel points as the unlabelled points and we
discard them during the pre-training phase. Therefore, the
pre-training stage of EUMS† considers only the base points
in each scene Xb and optimises fξ ◦ fb by considering the
objective function ℓ(Ŷb,Yb), where Ŷb are the network pre-
dictions Ŷb = (fξ ◦ fb)(Xb) and Yb are the ground-truth
annotations for the base points.

Pseudo-labelling. EUMS assumes that each image con-
tains at most one novel class, allowing to compute a unique
pseudo-label for each image. Authors in [5] propose to first
average pool the features of the novel pixels in each im-
age and then collect the image-level representations for the
whole dataset. Finally, the hard pseudo-labels for all the
novel points in each image are obtained by propagating the
clustering affiliation of each image-level feature vector, de-

termined by using the k-means algorithm.
In semantic segmentation for 3D point clouds, multiple

novel classes usually occur in the same scene. Therefore,
in EUMS† we propose to extract the per-point features Fn,i

with fξ for all the novel points Xn,i contained in the i-th
scene of the dataset. However, a large amount of novel
points is difficult to handle due to hardware constrains. We
randomly select a subset of point-level vectors using Ψ from
each scene by setting a ratio (i.e. 30%) with an upper bound
(i.e. 1K) on the number of points to select. Finally, we ap-
ply k-means clustering on the set of features collected over
the whole dataset and obtain the pseudo-labels Ỹn,i for the
selected novel points in Xn,i. To further enrich the pseudo-
labels, we propagate the pseudo-label of each novel point to
its nearest neighbour in the coordinate space. This allows
us to increase the number of pseudo-labelled novel points.
Fine-tuning. During the last step of the EUMS†, we fine-
tune the complete model following the same strategy used
in [5]: given a point cloud X , we compute the class predic-
tions Ŷ as Ŷ = (fξ ◦ fc)(X ) and we optimise the network
considering the loss ℓ(Ŷ, Ỹ), where Ỹ = Yb ∪ Ỹn.

4. Qualitative results
In this section, we report additional qualitative results by

comparing NOPS with EUMS† [5] predictions.
Figs. 3-6, show qualitative results for SemanticPOSS

from the split POSS-40 (Fig. 3), POSS-31 (Fig. 4), POSS-32

(Fig. 5) and POSS-33 (Fig. 6).
Figs. 7-10, show qualitative results for SemanticKITTI

from the split KITTI-50 (Fig. 7), KITTI-51 (Fig. 8), KITTI-
52 (Fig. 9) and KITTI-43 (Fig. 10). We add ground-truth
labels as the supervised reference.
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Figure 3. Qualitative comparison on SemanticPOSS from POSS-40. EUMS† [5] predicts wrong and cluttered predictions on the novel
classes. NOPS provides improved predictions by assigning the correct classes to the majority of the points and only a minority are
misclassified.
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Figure 4. Qualitative comparison on SemanticPOSS from POSS-31. EUMS† [5] predicts wrong and cluttered predictions on the novel
classes. NOPS provides improved predictions by assigning the correct classes to the majority of the points and only a minority are
misclassified.
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Figure 5. Qualitative comparison on SemanticPOSS from POSS-32. EUMS† [5] predicts wrong and cluttered predictions on the novel
classes. NOPS provides improved predictions by assigning the correct classes to the majority of the points and only a minority are
misclassified.
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Figure 6. Qualitative comparison on SemanticPOSS from POSS-33. EUMS† [5] predicts wrong and cluttered predictions on the novel
classes. NOPS provides improved predictions by assigning the correct classes to the majority of the points and only a minority are
misclassified.
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Figure 7. Qualitative comparison on SemanticKITTI from KITTI-50. EUMS† [5] outputs are completely or partially wrong for the novel
classes. NOPS improves the performance by providing correct and more homogeneous predictions.
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Figure 8. Qualitative comparison on SemanticKITTI from KITTI-51. EUMS† [5] outputs are completely or partially wrong for the novel
classes. NOPS improves the performance by providing correct and more homogeneous predictions.
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Figure 9. Qualitative comparison on SemanticKITTI from KITTI-52. EUMS† [5] outputs are completely or partially wrong for the novel
classes. NOPS improves the performance by providing correct and more homogeneous predictions.
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Figure 10. Qualitative comparison on SemanticKITTI from KITTI-43. EUMS† [5] outputs are completely or partially wrong for the novel
classes. NOPS improves the performance by providing correct and more homogeneous predictions.
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