
Conjugate Product Graphs for Globally Optimal 2D-3D Shape Matching
– Appendix –

Paul Roetzer1 Zorah Lähner2 Florian Bernard1

University of Bonn1 University of Siegen2

A1. Segmentation Pre-Matching

In Fig. A1, we visualise the pre-matching which is used
by the approach in [3]. It is obvious that the injection of
such information into the objective function makes finding
valid solutions substantially easier.

Figure A1. Visualisation of pre-matched segmentation informa-
tion on cat from the TOSCA dataset. Different colours encode
different segments, while darkest blue encodes the transition be-
tween different segments.

For a fair comparison, in addition to our method that
does not use this information, we also evaluate ”Ours-Seg.”,
in which we incorporate the above segmentation informa-
tion as an additional feature descriptor, see [3] for details.

A2. Branch and Bound Algorithm

Algorithm A1 describes our optimisation strategy. We
adapt the branch and bound algorithm introduced in [3] to
conjugate product graphs and implement runtime improve-
ments by increasing chances of finding tighter upper bounds
earlier.

The final goal of the optimisation is to find a cyclic
path with minimal cost. However, Dijkstra’s algorithm only
finds shortest (but not necessarily cyclic) paths. To that end,
we represent the (conjugate) product graph as sequential
graph, in which the first and last layers are duplicates, such
that a path going from the same vertex in the first and last
layer corresponds to a cyclic path.

Thus, the cyclic path with minimal cost can be found
by computing the shortest path for every vertex on the first
layer to every respective vertex on the last layer, and subse-
quently choosing among the computed paths the one with

minimal cost. In general, this requires to solve a total
of 2|EN | + |VN | (ordinary) shortest path problems, and
is computationally more expensive than the branch-and-
bound strategy that we pursue.

The main idea of branch-and-bound is to iteratively sub-
divide the search space, while tightening upper and lower
bounds using the results of previous iterations. In that
sense, instead of searching for shortest paths from each ver-
tex on the first layer to each respective vertex on the last
layer, we search for the shortest path from a set of vertices
B ⊂ V∗ on the first layer to the respective set of vertices
B on the last layer, see Fig. A2 (left). There is no guaran-
tee that the path C = (v∗1 , . . . , v

∗
|C|) from B (first layer) to

its duplicate B (last layer) with minimal energy is indeed
cyclic, i.e. that the final vertex v∗|C| in the last layer is in-
deed the same as the starting vertex v∗1 in the first layer. If
C is not cyclic, we partition B into smaller, disjunct subsets
B1 and B2 (with B1 ∪ B2 = B and B1 ∩ B2 = ∅) until
a cyclic path is found (this is the branching strategy, see
Fig. A2). The partitioning is done by calculating Voronoi
cells around edges eN1 and eN|C| on 3D shape assuming eN1
and eN|C| are not identical (where the conjugate product ver-
tex v∗1 = (eM1 , eN1) contains edge eN1 on 3D shape and con-
jugate product vertex v∗|C| = (eM|C|, e

N
|C|) contains edge eN|C|

on 3D shape). If eN1 and eN|C| are identical we partition ac-
cording to B1 = B \ {v∗|C|} and B2 = {v∗|C|}.

The path cost dC of non-cyclic paths (i.e. v∗1 ̸= v∗|C|) is
a lower bound b(·) on the path cost of the globally optimal
cyclic path. Whenever v∗1 and v∗|C| are equal (meaning that
C is a cyclic path), an upper bound bupper is found, which
might already be the globally optimal path, but can only be
identified as such if all other branches do not yield cyclic
paths with lower costs. Hence, the algorithm has to explore
all other branches, which in the worst case are as many as
there are vertices on one layer (i.e. 2|EN |+ |VN | many).

While searching for the optimal path, the algorithm only
explores paths with cost dC < bupper and thus performance
can be improved if tighter upper bounds bupper are found as
early as possible. We improve the branch-and-bound algo-
rithm of [3] by computing all paths Call of a branch, and then

1

(duplicate)

Figure A2. Illustration of the branching strategy in Algo-
rithm A1. First, the shortest path from all vertices in B on the
first layer to the same vertices on the duplicate first layer (which
amounts to the last layer) is computed. The resulting shortest path
from B on the first layer to B on the last layer might not start and
end on the same vertex (since we are searching for a shortest path
from a set of vertices to a set of vertices). Whenever this is the
case, B is partitioned into two sets B1 and B2, for which in sub-
sequent iterations shortest paths are computed analogously as for
B.

search within these for cyclic paths to find lower values of
the upper bound bupper earlier. We want to point out that no
additional computational effort is required to compute Call
using the implementation of [3], since all paths are already
available (see Fig. A4 for runtime comparisons).

A3. Number of Conjugate Product Edges
As mentioned in the main paper, the conjugate product

graph P∗ has 7 times more vertices than P and c ≈ 11
times more edges. In the following we derive c. To this
end, we count outgoing edges of each conjugate product
vertex (which is sufficient since P∗ is cyclic). Further, we
assume that on average each vertex j of the 3D shape N is
connected to 6 edges [1]. Thus, each (directed) edge on 3D
shape is connected to 5 other directed edges via their shared
vertex, see Fig. A3.

Figure A3. Subset of a triangle mesh. Directed pink edge is con-
nected to all directed black edges via blue vertex.

In conclusion, each conjugate product vertex is con-
nected to 5 conjugate product vertices on the same layer
(reflecting degenerate 2D conjugate product vertices) and

Input : 2D shapeM = (VM, EM),
3D shape N = (VN , EN)

Output: Optimal Path Copt ⊂ V∗

// First branch is complete first layer

B0 ← {v∗ = (eM, eN) | i0 = 0, eM = (i0, i1)};
// Initialise bounds and branches

b(B0)← 0;
bupper ←∞;
BBranches ← B0;
// Run until no branches with a gap between

lower and upper bound exist

while min
B∈BBranches

b(B) < bupper do

B ← argmin
B∈BBranches

b(B);

BBranches ← BBranches \ B;
Compute all paths Call = {C1, C2, . . . } with path

cost dCi
< bupper starting and ending in B;

if Call = ∅ then
// No path which meets dC < bupper

continue;

C ← argmin
C∈Call

dC ;

// Check if current path is cyclic

if v∗1 = v∗|C| then
if dC < bupper then

bupper ← dC ;
Copt ← C;

else
// Cut current branch into two parts

if eN1 = eN|C| then
B1 ← B \ {v∗|C|};
B2 ← {v∗|C|};

else
Compute B1,B2 as Voronoi cells around
eN1 and eN|C| respectively;

// Add new branches

BBranches ← BBranches ∪ {B1,B2};
// Update lower bounds

b(B1) = b(B2) = dC ;
// Try to tighten upper bound

for C ← Call do
if v∗1 = v∗|C| then

if dC < bupper then
bupper ← dC ;
Copt ← C;

Algorithm A1: Branch and Bound for Cyclic Shortest Path on
(Conjugate) Product Graph

6 conjugate product vertices on the next layer (reflecting 5
non-degenerate conjugate product vertices and 1 degener-
ate 3D conjugate product vertex). In total, each conjugate

product vertex is connected to c ≈ 11 other conjugate prod-
uct vertices. In combination with the number of vertices of
the conjugate product graph |V∗| = |VM| ·

(
2|EN |+ |VN |

)
we obtain the number of edges of P∗.

A4. Runtime
A4.1. Runtime Analysis

In the following we estimate runtime complexity of our
branch-and-bound algorithm for conjugate product graphs.
To this end, we use |EN | ≈ 3|VN | [1] to obtain |V∗| ≈
7 · |VM||VN | and |E∗| ≈ c · 7 · |VM||VN |.

The runtime of Dijkstra on an arbitrary graph G =
(VG , EG) isO

(
(|EG |+ |VG |) · log(|VG |)

)
where (|EG |+ |VG |)

indicates the number of update steps to be made, and
log(|VG |) indicates the complexity to access the priority
heap that is used to keep track of the next nodes to be up-
dated.

In our case, the number of update steps is (|E∗|+|V∗|) ≈
c ·14 · |VM||VN | (with c ≈ 11). We make use of the strictly
directed order of the |VM| layers of P∗, which allows to use
a heap that scales with the number of vertices of one layer
O(|VN |) (also see [3]). In summary, the runtime complex-
ity of a single Dijkstra run in our conjugate product graph
P∗ is O(|VM||VN | log(|VN |)).

To find the optimal cyclic path among all possible
cyclic paths, we run Dijkstra not just once but at most
O(|VN |) times (without any branch-and-bound optimi-
sation), which leads to a final runtime complexity of
O(|VM||VN |2 log(|VN |)).

A4.2. Runtime Comparison

In Fig. A4, we show the median runtime for the approach
by Lähner et al. [3] and our approach. The plot shows that
both approaches have the same asymptotic behaviour. Due
to the use of the larger conjugate product graph P∗ in com-
parison to product graph P (see also A3), our approach
takes by a constant factor more time to compute results. For
a fair comparison with equal graph sizes, we additionally
include computation times of our approach on the product
graph P which shows the improved performance when us-
ing Algorithm A1. Nevertheless, we emphasise that our ap-
proach (on P∗) still requires polynomial time while being
the only one that is able to compute 2D-3D matchings with-
out the need for pre-matching.

A5. 2D to 3D Deformation Transfer
We compute 2D to 3D deformation transfer by applying

the following steps:
2D-3D Matching We find a matching between 2D and

3D shape using our approach.
2D Deformation We deform the 2D shape by using a

skeleton which allows for different articulation of arms, legs

125 250 375 500

10−2

10−1

100

101

|VM|

R
un

tim
e

[m
in

]

Varying 2D Resolution

Lähner et al.
Ours on P∗

Ours on P
1k 2k 3k 4k

10−2

10−1

100

101

|VN |

R
un

tim
e

[m
in

]

Varying 3D Resolution

Lähner et al.
Ours on P∗

Ours on P

Figure A4. Runtime comparison of the approach by Lähner et
al. [3] and ours (on conjugate product graph P∗ as well as product
graph P for a fair comparison). The vertical axis shows the run-
time in minutes. Points (light colours) are individual experiments,
while thick lines are median runtimes. Spikes in computation time
stem from a varying number of branches needed to compute the
optimal path. Left: We fix the size of various 3D shapes and
gradually increase the number of vertices (horizontal axis) of re-
spective 2D shapes (by subsampling). Right: We fix the size of
various 2D shapes and gradually increase the number of vertices
(horizontal axis) of respective 3D shapes (also by subsampling).

and head. In combination with biharmonic weights [2, 7],
we obtain a smooth deformation of the 2D shape (we tessel-
late the interior of the contour for biharmonic weight com-
putation [4]).

2D-3D Alignment We find the optimal alignment T 3D
2D

of 2D shape and matched vertices on 3D shape by introduc-
ing a third, constant coordinate for 2D vertices and solving
the (orthogonal) Procrustes problem [6].

3D Deformation We apply the deformation to the 3D
shape by transforming the deformation on the 2D shape us-
ing T 3D

2D , applying the transformed deformation to a small
subset of 3D vertices (chosen by furthest distance) and us-
ing their new positions as a constraint when deforming all
other vertices of the 3D shape with the as-rigid-as-possible
method of [5].

A6. Ablation Studies
A6.1. Cost Function

We evaluate the performance of different parts of our
cost function in Tab. A1 as well as the performance of local
rigidity when using multidimensional spectral features.

A6.2. Discretisation

In Tab. A2 we evaluate the robustness of our method
w.r.t. to different discretisations. For all our experiments
in the main paper we reduce influence of discretisation by
decimating 3D shapes to half of their original resolution,
which results in more uniform edge lengths [2]. Addition-
ally, we re-sample 2D shapes with edge lengths according
to the mean edge length of the decimated 3D shape.

In Fig. A5, we compare the performance of our method
w.r.t to different discretised 3D shapes. We observe that our
method is relatively robust to different discretisation.

Method AUC ↑

Local Rigidity & Spectral 0.95
Local Rigidity 0.76
Local Thickness 0.92
Local Rigid. & Local Thick., (ψ1(x) = ψ2(x) = |x|) 0.89
Ours 0.98

Table A1. Various cost functions on FAUST. The score is the
area under the curve (AUC) of the cumulative segmentation er-
rors. All introduced components increase performance. Our one-
dimensional local thickness outperforms the multi-dimensional
spectral features due to different intrinsic properties of 2D and 3D
shapes.

Mean Edge Length 2D Shape AUC ↑

0.5·ē 0.96
0.75·ē 0.97

1·ē 0.98
1.25·ē 0.97
1.5·ē 0.95

Table A2. Ablation study on the sensitivity of our approach to
different discretisations. The score is the area under the curve
(AUC) of the cumulative segmentation errors. We fix the discreti-
sation of 3D shape and vary edge lengths of 2D shape. ē depicts
the mean edge length of 3D shape.

0 0.25 0.5 0.75 1
0

20

40

60

80

100

Geodesic Error Threshold

%
C

or
re

ct
S

eg
m

en
t

FAUST: Mesh Discretisation

Ours (non-uni.): 0.95
Ours (uniform): 0.98

Figure A5. Comparison of the matching performance of a uni-
formly sampled 3D shape (red line, edge lengths approx. equal)
vs. a 3D shape with non-uniform density (blue line, regions with
high curvature have smaller edge lengths) on the entire FAUST
dataset. The vertical axis shows % of points in correct segment (↑)
while the horizontal axis shows the geodesic error threshold.

In Fig. A6 we show results for matchings across different
resolution of 2D and 3D shapes. The experiment confirms
that our method is robust in reasonable settings. In addtion,
we can see that matchings on the coarsest and on the finest
level result in similar correspondences (cf. shape visualisa-
tions on the right of Fig. A6).

A6.3. Shape Discrepancies

In Fig. A7, we show results of cross-category matchings.

|VM|
39 79 159 318

|V
N
|

432 95.1 87.8 96.2 95.1

863 62.2 98.7 96.4 94.5

1724 59.2 81.1 98.7 98.0

3446 59.7 68.1 96.6 99.0

Figure A6. Mesh resolution. We downsample various 2D and
3D shapes (FAUST). The values with green and yellow back-
ground are AUC (↑) of % of points in correct segment. The val-
ues with grey background are the number of vertices of respec-
tive 2D and 3D shapes. On the right we show that matchings
from coarsest (|VN | = 432, |VM| = 39) and finest resolution
(|VN | = 3446, |VM| = 318) are consistent.

87.1 118.5 124.8

Figure A7. Cross-category matching. We match the 2D shape
of woman to the 3D shape of a woman and man, as well as to the
3D shape of dog. We can see that matching of woman to man
results in a plausible matching, while matching of woman to dog
does not yield meaningful results (as expected). The values are the
resulting path-costs for each pair.

A6.4. Noise

In Fig. A8, we evaluate our method’s robustness to noise
when the 3D shape is disturbed by Gaussian noise. We plot
the AUC (↑) of % of points in correct segment for each noise
level.

σ = 0.003 σ = 0.006

2 4 6 8
0.5

0.75

1

Standard Deviation σ · 10−3

AU
C
%

C
or

r.
S

eg
.

Robustness w.r.t. Noise

Ours

Figure A8. Robustness w.r.t noise. We apply Gaussian noise with
σ = {0.001, ..., 0.008} to 3D shapes and subsequently match
them to respective 2D shapes. Even under severe noise (see qual-
itative example on the left) our method is able to compute mean-
ingful results which is confirmed by the plot on the right which
shows AUC (↑) of % of points in correct segment (vertical axis)
for increasing standard deviations (horizontal axis).

A7. Qualitative Results on FAUST
In Fig. A9 we show additional qualititve results.

↖ ↖ ↖

↖ ↖
Figure A9. Qualitative results on instances of FAUST dataset.
We can see that left-right-flips occur (indicated with ↖) which
nevertheless are plausible matchings.

References
[1] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and

Bruno Lévy. Polygon Mesh Processing. CRC press, 2010. 2,
3

[2] Alec Jacobson et al. gptoolbox: Geometry processing toolbox,
2021. http://github.com/alecjacobson/gptoolbox. 3

[3] Zorah Lähner, Emanuele Rodolà, Frank R Schmidt,
Michael M Bronstein, and Daniel Cremers. Efficient glob-
ally optimal 2d-to-3d deformable shape matching. In CVPR,
2016. 1, 2, 3

[4] Per-Olof Persson and Gilbert Strang. A simple mesh generator
in matlab. SIAM review, 2004. 3

[5] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface
modeling. In SGP, 2007. 3

[6] Jos MF Ten Berge. Orthogonal procrustes rotation for two or
more matrices. Psychometrika, 1977. 3

[7] Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan.
Linear subspace design for real-time shape deformation. TOG,
2015. 3

