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A. Experiments

A.1. More Implementation Details

Visualization of Training samples. Figure 1 shows some
training samples of BECO. Note that the BECO model is
jointly fed the boundary-unknown (i.e., original) images
and the boundary-aware images. For boundary-unknown
images, their pseudo-labels and corresponding confidence
masks are generated offline from the first stage of WSSS.
And the boundary map of them is an all-zero matrix. For
boundary-aware images, their pseudo-labels are generated
online from the ensemble of predictions from two networks.
From (c) confidence masks, we can observe that the uncer-
tain pixels are concentrated on boundary areas and pixels
with high confidence tend to be correct and inside the ob-
ject. And the boundary map only represents the boundary
pixels of the copy-pasted class mask.
Illustration of Generating Boundary Map. Here, we
provide the implementation illustration for generating the
boundary map. We apply dilation and erosion on the given
class mask M ch1 to obtain the dilated variant M chd1 and
eroded variant M che1, respectively, where the kernel size
of dilation and erosion is set as 3. As shown in Figure 2,
we then perform a subtraction operation between M chd1

and M chde1 to obtain the boundary map B
′
.
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Figure 1. Visualization of training samples. (a) Input images
X , (b) Pseudo-labels Y , (c) Confidence masks M , (d) Boundary
maps B. The boundary map of the boundary-unknown sample is
an all-zero matrix. Best viewed in color.
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Figure 2. Illustration of the boundary map generation. Best viewed
in color.

A.2. Additional Results Using Different Deeplab

Some previous WSSS works adopt the standard
DeeplabV2 as the segmentation network, which uses
ResNet101 with an output stride of 8. Here, we also provide
additional results of our method using DeeplabV2 frame-
work. As shown in Table 1, the BECO using DeeplabV2
and DeeplabV3+ achieve similar performance on PAS-
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CAL VOC 2012 val set, (72.3% and 72.1% mIoU, respec-
tively), outperforming the state-of-the-art methods. And
our proposed COT and BECO* surpass the ENSEMBLE
by 1.8% and 4.5% on average, respectively. Considering
that DeeplabV2 with an output stride of 8 requires more
GPU memory and has a slower training/inference speed, we
use DeeplabV3+ with an output stride of 16 as the default
framework.

Table 1. Effectiveness using different Deeplab in terms of
mIoU(%) on VOC 2012 val set. All Deeplab versions use the
same backbone, i.e., ResNet101. BECO*: BECO without label
refinement.

Method DeeplabV2 DeeplabV3+
Baseline 65.6 65.1

ENSEMBLE 65.9 (+0.3) 66.2 (+1.1)
COT 67.5(+1.6) 68.2 (+2.0)

BECO* 70.2(+2.7) 70.9 (+2.7)
BECO 72.3(+2.1) 72.1 (+1.2)

A.3. Boundary Weight λ for the BECO Loss

We report the ablation result for λ of BECO on PASCAL
VOC dataset in Figure 3. We observe that our model is
robust to the choice of λ.

Table 2. Ablation study for r in terms of mIou(%) on PASCAL
VOC 2012. We fixed the other hyperparameters to the default set-
ting.

r 0% 40% 50% 60% 100%
mIoU NaN 70.5 70.9 70.1 67.6

A.4. Ratio r for Offline Confidence Mask Genera-
tion

The offline confidence mask regards the pixels with the
top r confidence in the same category as high confidence
and the rest are as low confidence. According to the pro-
posed co-training paradigm, only the offline pseudo-labels
of high-confidence pixels participate in training, while the
remaining pixels are supervised by the online prediction of
another network. Here, we report the ablation for r of the
offline confidence mask generation in Table 2. A smaller
r indicates that there are fewer offline pseudo-label pixels
involved in the BECO training, which loses too much infor-
mation from the first stage of WSSS and leads to the un-
derfitting of the model. When r becomes 0%, the model
performs self-learning without using offline pseudo-labels,
which leads to model non-convergence. A larger r indicates
that more offline pseudo-label pixels are involved in train-
ing, which leads to BECO overfitting to the increased noisy
annotations. As a result, we empirically choose r=50% for
all experiments on PASCAL VOC 2012 dataset and MS
COCO 2014 dataset.
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Figure 3. Ablation study for λ on PASCAL VOC 2012. We fixed
the other hyperparameters to the default settings.

70.1

70.3
70.4

70.9

70.7
70.8

69.6

69.8

70

70.2

70.4

70.6

70.8

71

0 0.5 0.7 0.95 0.98 0.99
m

Io
U

 (%
)

High confidence threshold τ

Figure 4. Ablation study for τ on PASCAL VOC 2012. We fixed
the other hyperparameters to the default settings.

A.5. Threshold τ for Generating Online Confidence
Mask

We report the ablation result for τ of online confidence
mask generation in Figure 4. Generating confidence masks
by large τ values is beneficial to accurate boundary con-
struction. We can observe that results are robust to the
choice of large τ value. If the value of τ is too small (e.g., 0,
0.5), some noise that is not the real boundary will be intro-
duced, resulting in a degraded boundary quality. When the
τ value is 0, our boundary construction strategy is similar
to Classmix. However, the naive copy-and-paste techniques
cannot guarantee to construct the boundary of the actual ob-
jects. Compared with τ = 0, constructing boundaries by a
large threshold τ = 0.95 is beneficial for the network to
learn the edge regions with more accurate annotations and
increases by 0.8% mIoU.

A.6. Analysis of the Coupling Effect of Co-training

In the proposed co-training paradigm, the same input
is fed into the siamese networks which interact with each
other by the generated pseudo-supervisions. One concern
may arise that the siamese networks with the same architec-
ture are easy to make the same predictions suffering from
a trivial solution, that is the two networks become coupled
and result in confirmation bias. To analyze the coupling ef-
fect of two networks in COT, we train two models where
the siamese networks with different initialization and the
same initialization are denoted as COT-D and COT-S, re-



Table 3. Quantitive results of boundary in terms of maximal F-measure(%) on SBD val set.

Method aeroplane bike bird boat bottle bus car cat chair cow table dog horse motorbike person plant sheep sofa train tv mean
Baseline 81.3 68 82.3 63 54.8 85.7 73 88.6 54.8 88.9 55.9 87.1 83.2 77.7 71.4 58.3 82.8 70.7 76.8 65.4 73.49
BECO 80.5 70.9 83.1 65.6 57.1 86.4 76.1 92.8 55.4 86.8 60.2 91.1 84.2 79.2 73.6 64.9 84.7 74.4 68.9 66.4 75.12

Figure 5. The co-training networks using different initialization
(COT-D) vs. the same initialization (COT-S). Left: the average
count of different predictions per image of the two networks in
COT-D and COT-S keep large values. Right: The weight distance
of the two networks in COT-D and COT-S both do not converge
to zero, while the weights of the two networks in COT-D keep a
larger distance than those of COT-S.

spectively. COT-D and COT-S achieve similar performance
on PASCAL VOC 2012 val set(68.2% and 67.9% mIoU,
respectively). We then calculate the euclidean distance of
the weights and the average count of different predictions
per image (i.e., the prediction distance) between the two
networks in each model. As shown in Figure 5, the pre-
diction distances of COT-D and COT-S still maintain large
values even in the last training epochs. Although the two
networks are initialized identically, the weight distance of
COT-S still does not converge to zero. And the weight dis-
tance of COT-D is larger than that of COT-S. These results
demonstrate that the two independent networks in the pro-
posed co-training paradigm are loosely coupled. We argue
that different initialization and dropout layers in the net-
works resemble different network perturbations, which al-
leviates the coupling effect between the two networks. Due
to the slightly superior performance of COT-D, we initial-
ize two independent networks differently by default in all
experiments.

A.7. Quantitative Results of Boundary Improve-
ment.

To provide quantitative results of boundary improve-
ment, we also evaluate BECO’s boundary quality on SBD
benchmark [1], which contains semantic boundary anno-
tations of 11355 images from the PASCAL VOC 2011
dataset. We test the predicted boundary maps of baseline
and BECO with maximal F-measure on SBD val set con-
taining 2857 images. Table 3 shows that BECO performs
substantially better than the baseline on most of the seman-
tic categories and on average.

Input Pseudo-label BECO GT

(a)

(b)

(d)

(c)

Figure 6. Visualization of the segmentation results of BECO. Due
to the co-occurring pixels from non-target objects(e.g., a railroad),
BECO would fail to assign the co-occurring pixels to the back-
ground class in some cases, e.g., (c) and (d).

A.8. Visualization on MS COCO 2014

We provide additional segmentation results of BECO for
several examples on the MS COCO 2014 val set, as shown
in Figure 7.

B. Limitations
Compared to the traditional training paradigm (training a

segmentation network with all pseudo-labels), BECO aims
to exploit the generalization ability of the network to learn
low-confidence parts, while the high-confidence parts are
supervised by pseudo-labels. In Section 4.2 of the main
paper, we have demonstrated the effectiveness of BECO.
However, with the improvement of BECO’s learning abil-
ity, in some exceptional cases, BECO would also learn some
”system errors”. For example, as shown in Figure 6 (c) and
(d), BECO is more inclined to identify ”railroad” as ”train”.
We argue that it is difficult to distinguish co-occurring pix-
els of non-target objects from a target object without addi-
tional prior knowledge due to the task setting and dataset
limitations of WSSS.
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Figure 7. Qualitative segmentation results on the MS COCO 2014 val set.
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