
PermutoSDF: Fast Multi-View Reconstruction with

Implicit Surfaces using Permutohedral Lattices

Supplementary Material

Radu Alexandru Rosu Sven Behnke

University of Bonn, Germany

{rosu, behnke}@ais.uni-bonn.de

S1. Training Details

For the first 100 k iterations, we train using the following

loss function:

L = Lrgb + λ1Leik + λ2Lcurv, (1)

where λ1 = 0.05, λ2 = 1.5. For the remaining 100 k it-

eration, we remove λ2Lcurv and replace it with λ3LLipschitz,

where λ3 = 1e−5.

For 3D point sampling, we first create 64 uniform sam-

ples along each ray. We restrict the samples to be within the

region that is defined as occupied by the occupancy grid.

Afterwards, we run two iterations of importance sampling,

each creating an additional 16 samples in the regions that

are close to the surface. Concentrating samples close to the

surface is crucial for recovering detail.

S2. Synthetic Data Comparison

We train also NeuS [4] and INGP [2] on the synthetically

rendered head dataset described in Sec 7.3. The recovered

meshes are shown in Fig. 1.

S3. Rendering Strategy

We compare images rendered through volumetric in-

tegration to the ones using sphere tracing. We observe

that sphere tracing has the advantage of being significantly

faster, as most rays converge towards the surface in few iter-

ations. However, grazing surfaces require an arbitrary num-

ber of iterations and since we use a maximum of 20 itera-

tions, these grazing surfaces may exhibit artifacts. A com-

parison between volumetric rendering and sphere tracing is

shown in Fig. 2.

S4. Tetrahedron vs Cube

Apart from the speed improvements of using a permuto-

hedral lattice instead of a hyper-cubical one, we are also in-

terested on maintaining the encoding quality and therefore

Ours NeuS INGP

Figure 1. We train our method, NeuS [4], and INGP [2] on the

synthetically rendered dataset, described in Sec 7.3. We recover

significantly more small detail than the other two methods. Best

viewed zoomed-in.

Sphere trace 42 ms Volume render 2383 ms

Figure 2. Sphere tracing is significantly faster than volumetric ren-

dering, but it suffers from artifacts at surfaces with a grazing angle.

the reconstruction details. We reconstruct the same scene

with both permutohedral encoding and cubical encoding as

described in INGP [2]. We set the hash maps of both ap-

proaches to the same number of parameters, features per

layer, and levels. We also extended the cubical lattice with

the coarse-to-fine optimization in order match the optimiza-

1

Tetrahedron Cube

Chamfer distance: 0.958 Chamfer distance: 0.965

PSNR: 34.69 PSNR: 34.72

Figure 3. We reconstruct the same scene using cube encoding and

permutohedral encoding. We did not observe significant differ-

ences in the reconstruction quality.

tion behavior of the permutohedral lattice. In Fig. 3, we

show both reconstructions and compare their Chamfer dis-

tance and PSNR values for novel-view synthesis. We did

not observe a significant difference in the reconstruction

quality.

S5. Occupancy Grid Update

We initialize an occupancy grid with all the voxels be-

ing occupied and with an initial SDF that is constant zero.

This ensures that we sample everywhere at the beginning of

training.

For updating the occupancy grid, we use the following

steps:

• Every 8th iteration of training, we sample 218 random

points within the bounding box that contains the scene.

• We obtain the SDF value sx for each point x by run-

ning a forward pass through the model.

• We obtain the old SDF value sold stored for the voxel

in which the point falls into.

• We compute a new SDF value for this voxel snew as

the exponential average of the old SDF for the voxel

and the SDF for the point: snew = sold + 0.3(sx −
sold).

• Since we are discretizing the SDF to a grid, and we

don’t want to miss any possible low SDF values that

we would want to sample, we compute the minimum

possible SDF that can be reached within this voxel un-

der the assumption of perfect Eikonal loss. For this,

we use: smin = max(0, |snew| − d), where d is the

length of the voxel diagonal.

• Using the logistic density distribution as described in

NeuS [4], we compute the weight that this sample

would contribute to the volumetric render—assuming

no obstruction from other samples:

w = a · e−a·smin/(1 + e−a·smin)2.

• If the weight w falls bellow a specified threshold, we

set the voxel to unoccupied and therefore don’t create

samples within it anymore.

S6. Color Calibration

We observe that some datasets exhibit images with dif-

ferent exposure times. This discrepancy between images

can influence both the reconstruction and the obtained color

field as the network would try to explain the variability with

view-dependent effects. We circumvent this by learning a

per-camera gain g = (1 +∆g) and bias b so that the recon-

structed color for each camera is c = σ(ĉ · g + b), where ĉ
is the raw color output from the network and σ is a sigmoid

function that restricts the color to the correct range. We set

a selected camera (usually the first one from the dataset) to

have g = 1 and b = 0 and apply weight decay to ∆g and b
to further ensure that the calibration doesn’t alter the colors

unnecessarily.

S7. 4D Spatial-temporal Surface

For fitting a 4D surface, we sample random points from

animated 3D meshes. These 3D points are concatenated

with a time dimension that ranges from 0 to 1, where 0 is the

start time of the animation and 1 is the end. We define these

4D samples at the surface of the mesh as xs. We also com-

pute the normal ns for each on the surface samples. We ad-

ditionally define random 4D samples in a bounded domain

around the animated mesh which we denote with xr After-

wards, we learn a model g(h; Φ) together with an encoding

h = enc(x; θ) that maps from the 4D coordinate to an SDF

value. For this, we follow the approach of SIREN [3] and

use a loss of the form:

Lsdf =
∑

xs∪xr

(∥∇g(enc(x))∥ − 1)
2

+
∑

xs

∥g(enc(x)∥

+
∑

xs

(∇g(enc(x)) · ns − 1)

+
∑

xr

exp(−α · |g(enc(x))|).

(2)

3 7 14 28 56

Figure 4. We experiment with the number of input images for

our method. We observe significant degradation at around 7 input

images and a failure to converge at 3 images.

In this 4D experiment, no explicit smoothness was en-

forced in the temporal domain since we didn’t find it nec-

essary. We sample from an animation of 100 frames so the

temporal resolution is relatively high. At lower temporal

resolution, smoothness might again become a concern.

Nevertheless, this approach shows that our model can

deal with 4D representations onto which further ideas, like

dynamic deformation fields, can be built upon.

S8. Number of Cameras

In order to study the robustness of our method to the

number of input images, we vary the number of images used

for reconstruction as shown in Fig. 4. Due to the curvature

loss, our method can recover smooth but plausible surfaces

even with as low as seven input images. However, for a

smaller number of input images we observe a high likeli-

hood of not converging to the correct surface.

S9. Training schedule

We follow a fixed training schedule over 200k iterations.

This includes a phase where we train with curvature loss in

order to recover the rough shape, and another phase with

RGB regularization to recover detail. In order to study the

robustness of our method to this schedule, we expand and

contract the schedule to be as long as 300k iteration or as

short as 50k iterations and show the results in Fig. 5. By

modifying the schedule, we proportionally expand or con-

tract the time that is spent optimizing the sphere, training

with high curvature, and training with RGB regularization.

We observe that the model is quite robust to different sched-

ules and only for the very short ones it fails to recover some

of the geometry. In general, we found that view-dependent

effects like the highlight on the apple are the parts that take

the longest to converge to good geometry. Most objects

are reconstructed well with shorter schedules but our de-

fault schedule of 200k iteration is a good trade-off between

optimization speed and accuracy.

50k 100k 150k 200k (default) 300k

Figure 5. We follow a fixed training schedule that finishes after

200k iteration. We expand and contract this fixed schedule to be

shorter or longer in order to test robustness. We see that for a

schedule of 50k the method fails to reconstruct the geometry for

the highlight of the apple. Our default of 200k can recover good

geometry in reasonable time. A longer schedule results in better

reconstructions at the cost of more optimization time.

RGB input NeuS Ours

Figure 6. We observe that our model sometimes struggle with

very reflective surface like the metal on the scissors. It tends to

add noisy geometry to these surfaces in order to explain the view-

dependent effects. Object priors or a higher curvature loss for this

kind of objects could alleviate the issue.

S10. Reflective Surfaces

Our model tries to explain large color changes with

changes in geometry. This behavior can be detrimental in

the case of mirror-like surfaces. As we observe in Fig. 6,

NeuS recovers a smooth surface on the metal scissors while

our method exhibits more noise. This can be seen as a gen-

eral limitation of RGB reconstruction methods for which it

is difficult to know if the changes in color are from view-

dependent effects or from high-frequency geometry. A

model that learns object priors might perform better in these

cases.

S11. Thin Structures

An interesting case to test for our SDF-based method is

reconstructing thin structures. For this, we capture 14 im-

ages of a plant with relatively complex geometry with many

leafs and self occlusions. Fig. 7 shows a rendered novel

view and surface normals. Our method reconstructs accu-

rate color and plausible geometry. Despite some errors that

are to be expected given the low image count, it can recover

thin steams and leaves which shows that our method is ro-

bust to this kind of data.

RGB Normal at surface

Figure 7. Plant reconstruction is an especially difficult case since

it features many self-occlusions and thin structures. We observe

that our method can deal well with this kind of data despite using

only 14 images as input.

S12. Qualitative DTU Results

In Fig. 8 – Fig. 10, we show additional qualitative re-

sults from the DTU dataset [1]. We show extracted meshes

and error maps which represent the distance from each

mesh vertex towards the nearest point from the ground-

truth. Please note that the ground-truth can have holes in

areas of high reflectance or self-occlusion and this shows as

a bright yellow color in the error map.

References

[1] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola,

and Henrik Aanæs. Large scale multi-view stereopsis eval-

uation. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 406–413, 2014. 4

[2] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. ACM Transactions on Graphics (SIG-

GRAPH), 41(4):102:1–102:15, July 2022. 1

[3] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural represen-

tations with periodic activation functions. In Advances in

Neural Information Processing Systems 33 (NeurIPS), pages

7462–7473, 2020. 2

[4] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku

Komura, and Wenping Wang. NeuS: Learning neural implicit

surfaces by volume rendering for multi-view reconstruction.

In Advances in Neural Information Processing Systems 34

(NeurIPS), pages 27171–27183, 2021. 1, 2

G.T. point cloud Ours NeuS Colmap INGP

Figure 8. DTU qualitative comparison of extracted meshes and error maps.

G.T. point cloud Ours NeuS Colmap INGP

Figure 9. DTU qualitative comparison of extracted meshes and error maps.

G.T. point cloud Ours NeuS Colmap INGP

Figure 10. DTU qualitative comparison of extracted meshes and error maps.

