Supplementary of Token Contrast for Weakly-Supervised Semantic
Segmentation

1. Additional Results
1.1. Backbone with ViT Variants

In the previous experiments, we mainly conducted ex-
periments with ViT-B as the backbone. In Figure 1 and
Figure 2, we report the evaluation of the generated CAM
and semantic results with ViT using other configurations
(VIiT-S, VIT-L [3]). ViT-S and ViT-L consist of 12 and 24
Transformer blocks, respectively. We show that other back-
bones also encounter the over-smoothing issue and the pro-
posed ToCo can finely address it. Specifically, without the
proposed ToCo, the generated CAM typically activates all
image regions, and the semantic segmentation results also
perform badly. In a contrast, the proposed ToCo finely ad-
dresses the over-smoothing issue and promotes the semantic
segmentation performance to 65.2% and 71.2% mloU with
ViT-S and ViT-L as the backbone, respectively.

1.2. Hyper-parameters

We report the impact of other hyper-parameters in this
section.
Background Thresholds. In Table 2a, we report the impact
of background thresholds to differentiate the foreground,
background, and uncertain regions. We show the combi-
nation of 8, = 0.7 and 5; = 0.25 can achieve the best
performance.
Temperature Factors. Table 2b presents the performance
w.r.t. the temperature factor 7 in Equation (4). 7 control
the sharpness of the logits. In Table 2b, we observe that
74=0.5 yields the best performance, while other values can
also achieve favorable performance.
Loss Weights. Table 2c reports the analysis of the weights
of loss terms. The combination of (A; = 0.2, Ao = 0.5, A\3 =
0.1) can produce the best semantic segmentation results.

1.3. Setting of L.

In the PTC module, due to the observation that the co-
sine similarities of patch tokens are usually positive values,
as indicated in [2, 4], we use the absolute cosine similarity
instead of the origin cosine similarity in L,s.. In Table 1,
we report the evaluation of pseudo labels M and semantic
segmentation results Seg.

Table 1 shows that directly minimizing the cosine simi-
larity (CosSim) cannot produce satisfactory results. A pos-
sible reason is that two patch tokens with negative similar-
ities are still correlated. When ignoring the negative parts
(ReLu(CosSim)), the results are remarkably promoted. Fi-
nally, using the absolute cosine similarity (Abs(CosSim))
can finely optimize the positive and negative parts and yield
the best results.

1.4. Additional Quantitative/Qualitative Results

Per-Class Results. We report the per-class semantic seg-
mentation results on the VOC val set in Table 3. Table 3
shows that the proposed ToCo can achieve the highest ac-
curacy in most semantic classes.

Pseudo Labels. We present the generated CAM in Figure 3.
Figure 3 demonstrates that the proposed PTC and CTC can
address the over-smoothing issue and further distinguish the
uncertain regions, respectively. Besides, ToCo can generate
better pseudo labels than the recent state-of-the-art single-
stage method, AFA [6].

Semantic Segmentation Results. The qualitative semantic
segmentation in Figure 4 shows that ToCo can surpass AFA
[6] and achieve close results with the ground-truth.
Attention Maps of Class Token. In Figure 5, we visualize
more attention maps of class token w.r.t. other patch tokens.
Figure 5 shows the global view can discover most object re-
gions but ignore some uncertain local regions, which can be
activated in the local view. By contrasting the class tokens
of global and local views in the CTC module, the represen-
tation of the integral regions can be more consistent.

‘ M Seg.
CosSim 36.5 29.6
ReLu(CosSim) 63.0 60.1
Abs(CosSim) 70.5 68.1

Table 1. The impact of CosSim in £ ;..
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Figure 1. Evaluation of the generated CAM and semantic segmentation results with ViT-S. The results are evaluated on the VOC
dataset.
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Figure 2. Evaluation of the generated CAM and semantic segmentation results with ViT-L!. The results are evaluated on the VOC
dataset.
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(a) Background thresholds. (b) Temperatures. (c) Loss Weights.

Table 2. Impact of hyper-parameters. The performance is evaluated on the VOC val set. The default settings are marked in gray .
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Table 3. Evaluation and comparison of the semantic segmentation results in mIoU on the val set. t denotes using ImageNet-21k [5]
pretrained weights.
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Figure 3. Visualization of CAM. From left to right, the CAM is generated with AFA [6], ViT baseline, ViT with PTC, ViT with PTC and
CTC, and the proposed ToCo.
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Figure 5. Visualization of the attention map of class token w.r.t. patch tokens. The brighter region indicates a larger attention value.
Left: the global view image in CTC; Right: the local view image randomly cropped from the global view in CTC.
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