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This supplemental document provides more detail on the
experiments and technical aspects for the proposed tech-
nique. In Sec. A we discuss our experimental setup for
capturing real data and describe our camera calibration and
other details. We then show more results on synthetic
(Sec. B) and real data (Sec. C). Here, we show visual results
for ssl-E2VID [5], which as mentioned in the main docu-
ment are clearly worse than E2VID [6]. We then show an
application of running our approach in real-time through an
instant-ngp implementation [7] (Sec. D). We demonstrate
the ability to extract meshes from our trained models in
Sec. F. Then we provide details on the window sampling
in Sec. G. Finally, we include an additional ablation study
for our method, i.e., on real data (Sec. H) and study the ef-
fect of inaccurate camera poses (Sec. I) and the robustness
to noise events in the training data (Sec. J).

Figure 1. Our real data recording setup. The object is placed on a
45 RPM direct-drive vinyl turntable and lit by a 5W USB ring light
mounted directly above it. The scene is recorded with a DAVIS
346C colour event camera (right bottom).

A. Real Data Capture

We use the DAVIS 346C colour event camera to record
our real sequence. Fig. 1 shows photos of the setup we used
to record the real data. We used the default camera settings
in the DV software provided with the camera.

A.1. Camera Pose Calibration

We estimate the extrinsic parameters of the event cam-
era as follows. We noticed that due to the constant rotation
speed of the turntable, camera extrinsics can be computed
analytically as a point uniformly moving on a circle looking
at its centre. In practice, this requires both precise mechan-
ical and computational calibration.

First, we adjusted the camera tripod as precise as pos-
sible so that the vertical through the optical centre of the
camera matches the turntable rotation axis (Fig. 2)

Figure 2. Results of the mechanical adjustment of the camera tri-
pod as seen through the camera itself. The chequerboard and the
ruler are placed exactly at the turntable rotation axis. Here, yellow
is the vertical going through the optical centre of the camera. As
seen in the picture, both axes match up to a pixel. Please note that
the blue lines mark +/-10 and +/-20 pixels from the centre.

Second, we estimated the residual offset using the fol-
lowing protocol. We placed the chequerboard pattern with
its centre as close on the turntable’s axis of rotation as pos-
sible. Then we slowly rotated the plate and recorded corre-
sponding RGB frames using the event camera. Using this
data, we found the positions and rotations of the camera in
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space wrt. the chequerboard. These positions lie on the
circle, which corresponds to the correct camera poses, and
they are tilted to the rotational axis with an unknown an-
gle offset α. We solve for α, circle radius and circle centre
coordinates via optimisation. The optimisation objective is
such that all the rays coming through the optical centre of
the cameras must meet in the same point in space that is the
centre of the circle at a distance that equals to the radius of
the circle. We use Adam [1] optimiser with its learning rate
reduced on plateaus. We show the converged results and
convergence process on Fig. 3. In our recordings, we found

Figure 3. Camera extrinsic optimisation results (top) and conver-
gence process (bottom) using the chequerboard protocol. In red is
the optimised circle and the circle centre. In black are the arrows
starting from the extracted camera poses meeting in the circle cen-
tre. In blue is the loss function convergence; the peaks in the opti-
misation plot are caused by learning rate scheduling.

that α = 2.85◦ for the Goatling and Sewing recordings and
α = 0.2388◦ for the rest of the sequences.

A.2. Density Clipping

For the real scenes, we know that the object always lies
inside the cylinder defined by the turntable plate. Hence,
to filter the noise and artefacts in the unobserved areas, we
force the density to zero everywhere outside of this cylinder:

σ(x, y, z) = 0, if x2+y2 > r2max or z > zmax or z < zmin.
(1)

The cylinder parameters zmin, zmax and rmax are tuned
manually to fit the recorded experimental setup. In our case,
zmin = −0.35, zmax = 0.15 and rmax = 0.25.

B. Synthetic Data Results

We provide more synthetic data results and com-
parisons in Fig. 4 and in the supplementary video.
E2VID [6]+NeRF [4] struggles with background reproduc-
tion and separation, resulting in less clear images and back-
ground artefacts. In addition, the colour and detail repro-
duction are also a concern for E2VID+NeRF. Our method
does not suffer from such problems. It produces photo-
realistic results, capturing specularities (Lego, Materials,
Microphone), thin structures (Drums, Ficus, Lego, Micro-
phone), and textured regions (Hotdog, Chair).

Note that Tab. 1 in the main document shows that our
approach clearly outperforms E2VID [6]+NeRF [4].

C. Real Data Results

We provide more real data results in Fig. 5 and in the sup-
plementary video. In the “Plant” scene, we can reconstruct
every stem and thin leaf. In the “Sewing” scene, we recover
even a one-pixel-wide needle of the machine (best viewed
with zoom). In the “Microphone” scene, we can reconstruct
fine details such as a microphone grid. In the “Controller”
scene, we preserve its details in the dark regions despite
having low contrast. Similarly, in the “Goatling” scene,
we can reconstruct both the details in the dark and bright
highlights on the glasses. In the “Cube” scene, EventNeRF
recovers sharp colour details. “Multimeter”, “Cube” and
“Sewing” show how we recover view-dependent effects. In
the “Bottle” scene, we can see the drawings on the recon-
structed label. All our results are halo-free.

We show more visual results for DeblurNeRF [3] in
Fig. 6 and Fig. 7 (top). As stated in the main docu-
ment, Deblur-NeRF can not handle view-consistent blur
and thus produces clearly worse results than our method.
We also show in the same figures visual results for
E2VID [6]+NeRF [4] and ssl-E2VID [5]+NeRF [4]. As
stated in the main document, results produced by ssl-E2VID
are clearly worse than E2VID, In addition, ssl-E2VID can
only generate grayscale images. Our approach, however,
outperforms all related methods.
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E2VID+NeRF EventNeRF Ground Truth E2VID+NeRF EventNeRF Ground Truth

Figure 4. Additional results and E2VID [6]+NeRF [4] comparisons on all of the used synthetic scenes (from top: Hotdog, Chair, Drums,
Ficus, Lego, Materials and Microphone).

D. Real-Time Implementation

We show an interactive application of our approach that
runs in real-time. For this, we implement our method us-
ing torch-ngp [7] instead of the original NeRF representa-
tion [4]. Training a model using this implementation takes
around a minute using a single NVIDIA GeForce RTX 2070
GPU. At the test time, the method runs in real-time. We
show in Fig. 8 visual results for this implementation. For
image sequence results, please refer to the supplemental

video. Our real-time implementation produces highly pho-
torealistic results that can be viewed from an arbitrary view-
point. This, however, can come with some trade-off in the
rendering quality as shown in Tab. 1.

E. Tone-Mapping in Different Scenarios

The primary difference between the appearance of real,
synthetic and the real-time results is the tone-mapping used.
As real events have no ground-truth tone-mapping, we tune
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Figure 5. Additional EventNeRF reconstructions of the real scenes. We show two arbitrary views per scene.

it manually. To show the details in the dark regions we opt
for the reduced contrast in Fig. 4 of the main document
which results in images that could look washed out. The
speed gain of the real-time implementation is from using
torch-ngp [7], which is significantly faster than the original

NeRF [4].

F. Mesh Extraction
As another application, we show in Fig. 9 that we can ex-

tract a mesh from our NeRF reconstruction using marching
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Deblur-NeRF [3]

E2VID [6]+NeRF [4]

ssl-E2VID [5]+NeRF [4]

Our EventNeRF

Figure 6. Results generated by different approaches. Our EventNeRF clearly outperforms all the methods.

Our EventNeRF Our Real-time Implementation
Scene PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Drums 27.43 0.91 0.07 26.03 0.91 0.07
Lego 25.84 0.89 0.13 22.82 0.89 0.08
Chair 30.62 0.94 0.05 27.97 0.94 0.05
Ficus 31.94 0.94 0.05 26.77 0.92 0.12
Mic 31.78 0.96 0.03 28.34 0.95 0.04

Hotdog 30.26 0.94 0.04 23.99 0.93 0.10
Materials 24.10 0.94 0.07 26.05 0.93 0.07
Average 28.85 0.93 0.06 25.99 0.92 0.07

Table 1. Comparing our method using the original NeRF im-
plementation [4] (EventNeRF) against a real-time implementa-
tion based on torch-ngp [7]. While the real-time implementation
takes significantly less training and testing time, it can compro-
mise some of the rendering quality.

cubes [2]. The extracted mesh is textured and can be ren-
dered from an arbitrary camera viewpoint. For more results,
please see the interactive demo in our video.

G. Event Window Temporal Bounds Sampling

In Sec. 3.7 of the main document, the ends of the time in-
tervals t of all windows are fixed and uniformly distributed
through the whole length of the stream. This way, all views
are sampled uniformly. As our recordings are perfect loops,
we concatenate corresponding events from the end when
there are not enough events from the start of the stream
for the sampled window length. Window lengths Lmin and
Lmax were chosen empirically as the highest and lowest val-

5



Deblur-NeRF [3]

E2VID [6]+NeRF [4]

ssl-E2VID [5]+NeRF [4]

Our EventNeRF

Figure 7. Results generated by different approaches. Our EventNeRF clearly outperforms all the methods.

ues that did not result in the model diverging.

H. Ablation Study on Real Data

We ran the same ablation studies as in Sec. 4.4 of the
main document on real data; see Fig. 10 for the qualita-
tive results on the “Sewing” sequence. Our full method
produces the best results. Using short constant window
length instead of a randomised one results in significant
artefacts. As only views close to each other are used to su-
pervise the model in this case, long-term consistency and
low-frequency lighting does not propagate well. Using
long constant window length leads to the noticeable blur in
the reconstruction as short-time details and high-frequency

lighting information is not present in long windows. Using
only positive sampling causes more artefacts than in the full
model with negative sampling. We note that this effect is
less severe than in the case of synthetic data in Fig. 6 of the
main document. The differences are perhaps explained by
the inaccuracies in the camera parameters for the real data.
If the camera poses are highly accurate, the negative sam-
pling becomes more important; otherwise, the differences
will be smaller than the artefacts caused by the inaccuracies
in camera parameters. Nevertheless, these differences still
can be noticed in both real and synthetic data models. To
explore this hypothesis further, we analyse the effect of in-
troducing error to the camera parameters in the next section.
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Figure 8. Results on synthetic (top) and real sequences using our real-time implementation. This approach takes around a minute to train
and runs in real-time during the test.

Figure 9. We extract a textured mesh using marching cubes [2]. The mesh can be viewed from an arbitrary viewpoint.

I. Robustness to Camera Pose Errors

We noticed that camera pose errors lead to trailing arte-
facts. Hence, we developed a camera pose calibration tech-
nique for our setup which we describe in detail in Sec. A.1.
This led to cleaner predictions.

To measure this effect, we introduce error into syn-
thetic data camera poses and measure the performance on
“Drums” (see Fig. 11). 0◦, 0.01◦, 0.1◦, 1◦, 2◦ errors results
in 27.43, 27.26, 26.18, 18.11, 17.49 dB PSNR, correspond-
ingly (1◦ translates to 10-15 pixels offset at 346×260 pixels
image resolution). The steep change starting at 1◦ is due to
significant increase in trailing artefacts. This suggests that
at some threshold level of camera pose error between 0.1◦

and 1◦, the reconstruction quality starts to rapidly degrade.

J. Robustness to Noisy Events

For real data, we measure the amount of noise when
recording a static scene with a static camera. We record the
number of noise events per second (ev/s) using the lowest
and the highest brightness settings of our light source. Both
settings result in similar noise measurements of around

1.1 · 105 ev/s. Hence, we believe the amount of noise
with our camera settings is almost constant regardless of the
scene brightness. In our real data experiments, this amounts
to 10− 18% of the training event streams being noise.

With improved lighting, we do not expect our results
to change significantly. The event camera is reporting in
the log-space and, hence, would emit the same number
of events as long as the contrast between the darkest and
brightest parts is the same.

For synthetic data, we add no noise to the event stream in
the main document. However, if we add 1, 5, 15% of noisy
events to the training event stream, we obtain 27.35, 27.36,
27.31 dB PSNR on “Drums” (w/o noise: 27.43 dB). The
visualisations of the experimental results given in Fig. 12
also confirm that the change in quality is slight between all
tested models. This suggests that our method is sufficiently
robust to event noise in the training data and that it is not
the primary cause of artefacts in the case of real data.
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Full EventNeRF No negative sampling Const. short 10ms windows Const. long 100ms windows

Figure 10. Ablation studies on real data for the “Sewing” scene. The full model provides the best results with the most detail and fewest
artefacts. In case of “No negative sampling”, note the artefacts above and around the object. In the case of constant long windows, note the
blurriness. For the detailed analysis of these results, please refer to Sec. H.

0◦ (27.43 dB PSNR) 0.01◦ (27.26 dB PSNR) 0.1◦ (26.18 dB PSNR) 1◦ (18.11 dB PSNR) 2◦ (17.49 dB PSNR)

Figure 11. Study on the robustness of EventNeRF to the added error in camera parameters on “Drums”. Rotation error (specified in
degrees) is added to the camera extrinsics to simulate inaccuracies in camera pose calibration described in Sec. A.1. The results suggest
that above a certain threshold between 0.1◦ and 1◦, the reconstruction quality starts to rapidly decay due to the trailing artefacts. Please
refer to Sec. I for our detailed analysis of these results.

0% (27.43 dB PSNR) 1% (27.35 dB PSNR) 5% (27.36 dB PSNR) 15% (27.31 dB PSNR)

Figure 12. Study on the robustness of EventNeRF to the added noise events on “Drums”. A uniform number of random events (specified
in percentages) is added to the training event stream to simulate noise found in real data. The subtlety of the differences suggests that our
model is robust to noise events in amounts found within real data captures. Please refer to Sec. J for our detailed analysis of these results.
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