
Supplementary Material for DreamBooth: Fine Tuning Text-to-Image
Diffusion Models for Subject-Driven Generation

Background
Text-to-Image Diffusion Models Diffusion models are
probabilistic generative models that are trained to learn a
data distribution by the gradual denoising of a variable sam-
pled from a Gaussian distribution. Specifically, this cor-
responds to learning the reverse process of a fixed-length
Markovian forward process. In simple terms, a conditional
diffusion model x̂θ is trained using a squared error loss to
denoise a variably-noised image zt := αtx+σtϵ as follows:

Ex,c,ϵ,t

[
wt∥x̂θ(αtx+ σtϵ, c)− x∥22

]
(1)

where x is the ground-truth image, c is a conditioning
vector (e.g., obtained from a text prompt), ϵ ∼ N (0, I)
is a noise term and αt, σt, wt are terms that control the
noise schedule and sample quality, and are functions of
the diffusion process time t ∼ U([0, 1]). At inference
time, the diffusion model is sampled by iteratively denois-
ing zt1 ∼ N (0, I) using either the deterministic DDIM [10]
or the stochastic ancestral sampler [3]. Intermediate points
zt1 , . . . , ztT , where 1 = t1 > · · · > tT = 0, are generated,
with decreasing noise levels. These points, x̂t

0 := x̂θ(zt, c),
are functions of the x-predictions.

Recent state-of-the-art text-to-image diffusion models
use cascaded diffusion models in order to generate high-
resolution images from text [7, 9]. Specifically, [9] uses
a base text-to-image model with 64x64 output resolution,
and two text-conditional super-resolution (SR) models 64×
64 → 256× 256 and 256× 256 → 1024× 1024. Ramesh
et al. [7] use a similar configuration, with unconditional SR
models. A key component of high-quality sample genera-
tions from [9] is the use of noise conditioning augmenta-
tion [4] for the two SR modules. This consists in corrupting
the intermediate image using noise with specific strength,
and then conditioning the SR model on the level of corrup-
tion. Saharia et al. [9] select Gaussian noise as the form of
augmentation.

Other recent state-of-the-art text-to-image diffusion
models, such as Stable Diffusion [8], use a single diffusion
model to generate high-resolution images. Specifically, the
forward and backward diffusion processes occur in a lower-
dimensional latent space and an encoder-decoder architec-
ture is trained on a large image dataset to translate images
into latent codes. At inference time, a random noise latent
code goes through the backward diffusion process and the

pre-trained decoder is used to generate the final image. Our
method can be naturally applied to this scenario, where the
U-Net (and possibly the text encoder) are trained, and the
decoder is fixed.

Vocabulary Encoding The details of text-conditioning in
text-to-image diffusion models are of high importance for
visual quality and semantic fidelity. Ramesh et al. [7] use
CLIP text embeddings that are translated into image embed-
dings using a learned prior, while Saharia et al. [9] use a pre-
trained T5-XXL language model [6]. In our work, we use
the latter. Language models like T5-XXL generate embed-
dings of a tokenized text prompt, and vocabulary encoding
is an important pre-processing step for prompt embedding.
In order to transform a text prompt P into a conditioning
embedding c, the text is first tokenized using a tokenizer f
using a learned vocabulary. Following [9], we use the Sen-
tencePiece tokenizer [5]. After tokenizing a prompt P using
tokenizer f we obtain a fixed-length vector f(P). The lan-
guage model Γ is conditioned on this token identifier vector
to produce an embedding c := Γ(f(P)). Finally, the text-
to-image diffusion model is directly conditioned on c.

Dataset
Our dataset includes 30 subjects. We separate each sub-

ject into two categories: objects and live subjects/pets. 21 of
the 30 subjects are objects, and 9 are live subjects/pets. We
provide one sample image for each of the subjects in Fig-
ure 1. Images for this dataset were collected by the authors
or sourced from Unsplash [1].

We also collected 25 prompts: 20 recontextualization
prompts and 5 property modification prompts for objects.
10 recontextualization, 10 accessorization, and 5 property
modification prompts for live subjects/pets. Prompts are
shown in Figure 2

For the evaluation suite we generate four images per sub-
ject and per prompt, totaling 3,000 images. This allows us
to robustly measure performances and generalization capa-
bilities of a method. We make our dataset and evaluation
protocol publicly available on the project webpage for fu-
ture use in evaluating subject-driven generation.
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Figure 1. Dataset. Example images for each subject in our proposed dataset.

Subject Fidelity Metrics
In the main paper we comment on the superiority of our

proposed DINO metric in terms of subject fidelity. We hy-
pothesize that this is because DINO is, in essence, trained
in a self-supervised manner to distinguish different images
from each other modulo data augmentations. This is in
contrast to the CLIP-I metric, where CLIP is trained with
text-image pairs and encodes more descriptive information
about images - but not necessarily fine details that are not
present in the text annotations. We give an example in Fig-
ure 3, where the first column contains a reference real im-
age, the second column a different real image, the third col-
umn a DreamBooth generated image and the last column
an image generated using Textual Inversion. We compare
the 2nd, 3rd and 4th image to the real reference image us-

ing the CLIP-I and DINO metrics. We observe that the
2nd real image obtains both the highest CLIP-I and DINO
scores. The DreamBooth sample looks much more simi-
lar to the reference sample than the Textual Inversion sam-
ple, yet the CLIP-I score for the Textual Inversion sample
is much higher than the DreamBooth sample. However, we
can see that the DINO similarity is higher for the Dream-
Booth sample - which more closely tracks human evalua-
tion of subject fidelity. In order to quantitatively test this,
we compute correlations between DINO/CLIP-I scores and
normalized human preference scores. DINO has a Pearson
correlation coeff. of 0.32 with human preference (vs. 0.27
for the CLIP-I metric used in [20]), with a very low p-value
of 9.44× 10−30.



Figure 2. Prompts. Evaluation prompts for both objects and live subjects.

Figure 3. CLIP-I vs. DINO Metrics. The DreamBooth CLIP-I similarity to the reference image is lower than that of the Textual Inversion
sample, even though the DreamBooth subject looks more similar to the reference subject. The DINO metric more closely tracks human
evaluation of subject fidelity here.

User Study
Below we include the full instructions used for our user

study. For subject fidelity:

• Read the task carefully, inspect the reference items and
then inspect the generated items.

• Select which of the two generated items (A or B) re-
produces the identity (e.g. item type and details) of the
reference item.

• The subject might be wearing accessories (e.g. hats,
outfits). These should not affect your answer. Do not
take them into account.

• If you’re not sure, select Cannot Determine / Both
Equally.

For text fidelity:

• Read the task carefully, inspect the reference text and
then inspect the generated items.

• Select which of the two generated items (A or B) is
best described by the reference text.

• If you’re not sure, select Cannot Determine / Both
Equally.

For each study we asked 72 users to answer questionnaires
of 25 comparative questions (3 users per questionnaire), to-
taling 1800 answers - with 600 image pairs evaluated.

Additional Applications and Examples
Additional Samples We provide a large amount of addi-
tional random samples in an annex HTML file. We compare
real images, to DreamBooth generated images using Ima-
gen and Stable Diffusion as well as images generated using
Textual Inversion on Stable Diffusion.

Recontextualization We show additional high-quality
examples of recontextualization in Figure 4.



Art Renditions We show additional examples of original
artistic renditions of a personalized model in Figure 5.

Expression Manipulation Our method allows for new
image generation of the subject with modified expressions
that are not seen in the original set of subject images. We
show examples in Figure 6. The range of expressiveness
is high, ranging from negative to positive valence emotions
and different levels of arousal. In all examples, the unique-
ness of the subject dog is preserved - specifically, the asym-
metric white streak on its face remains in all generated im-
ages.

Novel View Synthesis We show more viewpoints for
novel view synthesis in Figure 7, along with prompts used
to generate the samples.

Accessorization An interesting capability stemming from
the strong compositional prior of the generation model is the
ability to accessorize subjects. In Figure 8 we show exam-
ples of accessorization of a Chow Chow dog. We prompt
the model with a sentence of the form: “a [V] [class noun]
wearing [accessory]”. In this manner, we are able to fit dif-
ferent accessories onto this dog - with aesthetically pleasing
results. Note that the identity of the dog is preserved in all
frames, and subject-accessory contact and articulation are
realistic.

Property Modification We are able to modify subject in-
stance properties. For example we can include a color ad-
jective in the prompt sentence “a [color adjective] [V] [class
noun]”. In that way, we can generate novel instances of
our subject with different colors. The generated scene can
be very similar to the original scene, or it can be changed
given a descriptive prompt. We show color changes of a
car in the first row of Figure 9. We select similar view-
points for effect, but we can generate different viewpoints
of the car with different colors in different scenarios. This
is a simple example of property modification, but more se-
mantically complex property modifications can be achieved
using our method. For example, we show crosses between
a specific Chow Chow dog and different animal species in
the bottom row of Figure 9. We prompt the model with sen-
tences of the following structure: “a cross of a [V] dog and
a [target species]”. In particular, we can see in this example
that the identity of the dog is well preserved even when the
species changes - the face of the dog has certain individual
properties that are well preserved and melded with the target
species. Other property modifications are possible, such as
material modification (e.g. a dog made out of stone). Some
are harder than others and depend on the prior of the base
generation model.

Method 1 2 3 4 5

Backpack 0.494 0.515 0.596 0.604 0.597
Dog 0.798 0.851 0.871 0.876 0.864

Table 1. Effect of the number of input images on subject fidelity
(DINO).

Comic Book Generation In addition to photorealistic im-
ages, our method is able to capture the appearance of drawn
media and more. In Figure 10 we present, to the best of our
knowledge, the first instance of a full comic with a persis-
tent character generated by a generative model. Each comic
frame was generated using a descriptive prompt (e.g “a [V]
cartoon grabbing a fork and a knife saying “time to eat””).

Additional Experiments
Prior Preservation Loss

Here we show qualitative examples of how our prior
preservation loss (PPL) conserves variability in the prior
and show sample results in Figure 11. We verify that a
vanilla model is able to generate a large variety of dogs,
while a naively fine-tuned model on the subject dog ex-
hibits language drift and generates our subject dog given
the prompt “a dog”. Our proposed loss preserves the vari-
ability of the prior and the model is able to generate new
instances of our dog given a prompt of the style “a [V] dog”
but also varied instances of dogs given a “a dog” prompt.

Effect of Training Images

Here we run an experiment on the effects of the num-
ber of input images for model personalization. Specifically,
we train models for two subjects, 5 models per subject with
input images ranging from 1 to 5. We generate 4 images
for 10 different recontextualization prompts for each sub-
ject. We present qualitative results in Figure 12. We can
observe that for some subjects that are more common, and
lie more strongly in the distribution of the diffusion model,
such as the selected Corgi dog, we are able to accurately
capture the appearance using only two images - and some-
times only one, given careful hyperparameter choice. For
objects that are more rare, such as the selected backpack,
we need more samples to accurately preserve the subject
and to recontextualize it to diverse settings. Our quantita-
tive results support these conclusions - we present the DINO
subject fidelity metric in Table 1 and the CLIP-T prompt fi-
delity metric in Table 2. For both subjects we see that the
optimal amount of input images for subject and prompt is
4. This number can vary depending on the subject and we
settle on 3-5 images for model personalization.



Method 1 2 3 4 5

Backpack 0.798 0.851 0.871 0.876 0.864
Dog 0.646 0.683 0.734 0.740 0.730

Table 2. Effect of the number of input images on prompt fidelity
(CLIP-T).

Personalized Instance-Specific Super-Resolution
and Low-level Noise Augmentation for Imagen

While the text-to-image diffusion model controls for
most visual semantics, the super-resolution (SR) models
are essential to achieve photorealistic content and to pre-
serve subject instance details. We find that if SR networks
are used without fine-tuning, the generated output can con-
tain artifacts since the SR models might not be familiar
with certain details or textures of the subject instance, or
the subject instance might have hallucinated incorrect fea-
tures, or missing details. Figure 13 (bottom row) shows
some sample output images with no fine-tuning of SR mod-
els, where the model hallucinates some high-frequency de-
tails. We find that fine-tuning the 64 × 64 → 256 × 256
SR model is essential for most subjects, and fine-tuning the
256× 256 → 1024× 1024 model can benefit some subject
instances with high levels of fine-grained detail.

We find results to be suboptimal if the training recipes
and test parameters of Saharia et al. [9] are used to fine-
tune the SR models with the given few shots of a subject
instance. Specifically, we find that maintaining the original
level of noise augmentation used to train the SR networks
leads to the blurring of high-frequency patterns of the sub-
ject and of the environment. See Figure 13 (middle row)
for sample generations. In order to faithfully reproduce the
subject instance, we reduce the level of noise augmentation
from 10−3 to 10−5 during fine-tuning of the 256× 256 SR
model. With this small modification, We are able to recover
fine-grained details of the subject instance. We show how
using lower noise to train the super-resolution models im-
proves fidelity. Specifically, we show in Figure 13 that if the
super-resolution models are not fine-tuned, we observe hal-
lucination of high-frequency patterns on the subject which
hurts identity preservation. Further, if we use the ground-
truth noise augmentation level used for training the Imagen
256 × 256 model (10−3), we obtain blurred and non-crisp
details. If the noise used to train the SR model is reduced
to 10−5, then we conserve a large amount of detail without
pattern hallucination or blurring.

Comparisons

We include additional qualitative comparisons with Gal
et al. [2] in Figure 14. For this comparison, we train our
model on the training images of two objects appear in the
teaser of their work (headless sculpture and cat toy) kindly

provided by Gal et al. [2], and apply the prompts suggested
in their paper. For prompts where they present several gen-
erated images, we handpicked their best sample (with the
highest image quality and morphological similarity to the
subject). We find that our work can generate the same se-
mantic variations of these unique objects, with a high em-
phasis on preserving the subject identity, as can be seen, for
instance, by the detailed patterns of the cat sculpture that
are preserved.

Next, we show comparisons of recontextualization of a
subject clock, with distinctive features using our method
and prompt engineering using vanilla Imagen [9] and the
public API of DALL-E 2 [7]. After multiple iterations us-
ing both models, we settle for the base prompt “retro style
yellow alarm clock with a white clock face and a yellow
number three on the lower right part of the clock face” to
describe all of the important features of the subject clock
example. We find that while DALL-E 2 and vanilla Imagen
are able to generate retro-style yellow alarm clocks, they
struggle to represent a number 3 on the clock face, distinct
from the clock face numbers. In general, we find that it is
very hard to control fine-grained details of subject appear-
ance, even with exhaustive prompt engineering. Also, we
find that context can bleed into the appearance of our sub-
ject instance. We show the results in Figure 15, and can
observe that our method conserves fine-grained details of
the subject instance such as the shape, the clock face font,
and the large yellow number three on the clock face, among
others.

Societal Impact
This project aims to provide users with an effective tool

for synthesizing personal subjects (animals, objects) in dif-
ferent contexts. While general text-to-image models might
be biased towards specific attributes when synthesizing im-
ages from text, our approach enables the user to get a bet-
ter reconstruction of their desirable subjects. On contrary,
malicious parties might try to use such images to mislead
viewers. This is a common issue, existing in other genera-
tive models approaches or content manipulation techniques.
Future research in generative modeling, and specifically of
personalized generative priors, must continue investigating
and revalidating these concerns.
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Figure 4. Additional recontextualization samples of a backpack, vase, and teapot subject instances. We are able to generate images
of the subject instance in different environments, with high preservation of subject details and realistic interaction between the scene and
the subject. We display the conditioning prompts below each image.



Figure 5. Additional artistic renderings of a dog instance in the style of famous painters. We remark that many of the generated poses,
e.g., the Michelangelo renditions, were not seen in the training set. We also note that some renditions seem to have novel compositions and
faithfully imitate the style of the painter.

Figure 6. Expression manipulation of a dog instance. Our technique can synthesize various expressions that do not appear in the input
images, demonstrating the extrapolation power of the model. Note the unique asymmetric white streak on the subject dog’s face.



Figure 7. Text-guided view synthesis. Our technique can synthesize images with specified viewpoints for a subject cat (left to right: top,
bottom, side, and back views). Note that the generated poses are different from the input poses, and the background changes in a realistic
manner given a pose change. We also highlight the preservation of complex fur patterns on the subject cat’s forehead.

Figure 8. Outfitting a dog with accessories. The identity of the subject is preserved and many different outfits or accessories can be
applied to the dog given a prompt of type “a [V] dog wearing a police/chef/witch outfit”. We observe a realistic interaction between the
subject dog and the outfits or accessories, as well as a large variety of possible options.



Figure 9. Modification of subject properties while preserving their key features. We show color modifications in the first row (using
prompts “a [color] [V] car”), and crosses between a specific dog and different animals in the second row (using prompts “a cross of a [V]
dog and a [target species]”). We highlight the fact that our method preserves unique visual features that give the subject its identity or
essence, while performing the required property modification.



Figure 10. Generated comic. We present, to the best of our knowledge, the first comic comic with a persistent character generated by
prompting a generative model.



Figure 11. Preservation of class semantic priors with prior-preservation loss. Fine-tuning using images of our subject without prior-
preservation loss results in language drift and the model loses the capability of generating other members of our subject’s class. Using a
prior-preservation loss term allows our model to avoid this and to preserve the subject class’ prior.

Figure 12. Impact of number of input images. We observe that given only one input image, we are close to capture the identity of some
subjects (e.g. Corgi dog). More images are usually needed - two images are sufficient to reconstruct the Corgi dog in this example whereas
at least 3 are needed for a more rare item such as the backpack.



Figure 13. Ablations with fine-tuning the super-resolution (SR) models. Using the normal level of noise augmentation of [9] to train the
SR models results in blurred high-frequency patterns, while no fine-tuning results in hallucinated high-frequency patterns. Using low-level
noise augmentation for SR models improves sample quality and subject fidelity. Image credit (input images): Unsplash.

Figure 14. Comparisons with Gal et al. [2] using the subjects, images, and prompts from their work. Our approach is able to generate
semantically correct variations of unique objects, exhibiting a higher degree of preservation of subject features. Input images provided by
Gal et al. [2].



Figure 15. Comparison with DALL-E 2 and Imagen with detailed prompt engineering. After several trial-and-error iterations, the base
prompt used to generate DALL-E 2 and Imagen results was “retro style yellow alarm clock with a white clock face and a yellow number
three on the right part of the clock face”, which is highly descriptive of the subject clock. In general, it is hard to control fine-grained
details of subject appearance using prompts, even with large amounts of prompt engineering. Also, we can observe how context cues in the
prompt can bleed into subject appearance (e.g. with a blue number 3 on the clock face when the context is “on top of blue fabric”). Image
credit (input images): Unsplash.


