GazeNeRF: 3D-Aware Gaze Redirection with Neural Radiance Fields
Supplementary Material

1. Overview

In this supplementary material, we first provide
more details of the data pre-processing and training
procedure. We also show another ablation study re-
sults on loss components and a comparison between
GazeNeRF trained from scratch and the pre-trained
HeadNeRF [2] model. We then show additional qual-
itative results on different datasets. Furthermore, we
show the results of the few-shot personal calibration
experiments. We encourage the readers to also watch
the supplementary video that contains more animated
results of the proposed method.

2. Details of data pre-processing and
training precedure

The original resolution of images from ETH-
XGaze [0] is 6Kx4K, and the resolutions of the images
from other datasets are different from each other. To
unify them, we pre-process the images with the data
normalization method in [7], where the rotation and
translation between the camera and face coordinate
systems are standardized. We fix the normalized dis-
tance between the camera and the center of the face
to 680mm. To centralize the faces in the normalized
images, we use different values for the focal lengths for
the normalized camera projection matrices, which are
1600, 1400, 1600 and 1200 for ETH-XGaze [6], MPI-
IFaceGaze [8], ColumbiaGaze [5] and GazeCapture [3],
respectively.

To obtain the 3DMM parameters and the masks of
the eyes and the face only regions, we use the face
parsing model in [10] to segment the whole face. For
some images, we also use the face parsing model in [1]
and facial landmarks [I] to determine the eye masks
only when the face paring model [10] returns empty
results for the eyes.

GazeNeRF is trained with a single NVIDIA A40
GPU for one week. During inference, we fine-tune
GazeNeRF and update four learable latent codes using
a single image. Fine-tuning takes around one minute,
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and generating new image in one second.

3. Ablations on loss components

In this section, we show another ablation study on
the contributions of different loss components. We
train another three baseline GazeNeRF with differ-
ent loss components. Here the baseline GazeNeRF
represents the structure of GazeNeRF, which is Two-
stream+rotation. We take the reconstruction loss as
the base and verify the power of different loss com-
ponents in an additive way. The results are listed in
Tab. 1 and evaluated on ETH-XGaze dataset.

The results show that only using reconstruction loss
achieves the worst performance regarding all evalua-
tion metrics. Adding the perceptual loss boosts the
performance in all metrics, especially gaze and head
pose angular errors. Moreover, adding the disentangle-
ment loss achieves the best performance in the most of
evaluation metrics. Utilizing the functional loss helps
to drop the gaze angular error of GazeNeRF at the cost
of image quality (e.g. FID) and person identity.

4. Comparison between GazeNeRF
trained from scratch and the pre-
trained model

Tab. 2 shows the evaluation results between GazeN-
eRF trained from scratch and the pre-trained Head-
NeRF model [2]. We can find that training with the
pre-trained model helps improve the head pose error at
the cost of the gaze angular error. Regarding the image
quality and identity similarity, both models conduct
the similar performance.

5. Personal calibration for gaze estima-
tion

In this section, we demonstrate how GazeNeRF is
beneficial for the downstream task of person-specific
gaze estimation in a few-shot setting. Specifically,
given a few calibration samples from person-specific
test sets, we augment these real samples with gaze redi-
rected samples generated by GazeNeRF. We then fine-
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Table 1. Ablation study on different loss components.
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Table 2. Comparison of GazeNeRF trained from scratch to pre-trained HeadNeRF model.
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Figure 1. Downstream personal gaze estimation task in a
few-shot setting. The x-axis is the number of real samples
used, and the y-axis is the gaze estimation error in degree.
The results are calculated by averaging the angular error
between the 15 subjects of the ETH-XGaze person-specific
set. We show the result of only using real samples (blue),
using real plus generated samples from STED (green), and
using real plus generated samples from our GazeNeRF (red)
to fine-tune the pre-trained gaze estimator.

tune the gaze estimator pre-trained on ETH-XGaze’s
training set with these augmented samples and com-
pare the performance with the baseline model that is
fine-tuned only with real samples. To eliminate the in-
fluence of the number of samples, the size of augmented

samples is always 200 (real + generated samples). We
change the number of real samples used for the fine-
tuning during the evaluation.

The result is shown in Fig. 1, where the x-axis is the
number of real samples used and the y-axis is the gaze
estimation error in degree on the ETH-XGaze person-
specific test set. We test up to nine real samples for
the few-shot setting. Observe from the figure that fine-
tuning the pre-trained gaze estimator with both real
and generated samples from GazeNeRF brings a signifi-
cant improvement in gaze error versus only fine-tuning
with real samples. This trend is more evident when
fewer real samples are available. It indicates that the
generated sample from GazeNeRF is of high fidelity
in terms of its gaze angle, such that it can be help-
ful to improve the downstream gaze estimation accu-
racy. In Fig. 1 we also compare the result of few-shot
personal calibration when the generated samples come
from STED [9]. ST-ED performs the worst in this case.
It shows that the 2D generative model is less helpful for
the downstream gaze estimation task, which is due to
the lack of consideration of the 3D nature of the gaze
redirection task.

6. Additional qualitative results

In Fig. 2 we show additional qualitative results of
GazeNeRF and the SOTA baselines, evaluated on the
person-specific test set of the ETH-XGaze dataset.
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Figure 2. Additional visualization of generated images from ETH-XGaze with our GazeNeRF, STED and HeadNeRF. All
faces are applied with face masks to remove the background. Our GazeNeRF can generate photo-realistic face images with
different gaze directions and head poses. STED suffers from losing identity information, and HeadNeRF cannot generate
fine-grained eyes.



