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Appendix
In this appendix, we provide further details about ele-

ments of our work. We organize the content as follows:

• A - Visualizations

• B - Implementation Details

• C - Dataset Details

• D - Additional Baselines

• E - Real-Time Applications

• F - Societal Impact

• G - Limitations & Future Work

A. Visualizations
Visualizations of our model’s output heatmaps on videos

in the test split of our dataset can be viewed on our project
page http://fkryan.github.io/saal, or in the
included video file video examples.mp4. Yellow bound-
ing boxes denote the ground truth attended speakers and
blue bounding boxes denote people who are speaking but
not attended to by the camera wearer. These examples il-
lustrate the complexity of the conversation environments in
our dataset; we see that most frames contain multiple peo-
ple within the FOV, and there are typically multiple people
speaking at once. There is lots of head motion as people
engage in head-nodding behaviors and look between dif-
ferent people and around the room while listening. Addi-
tionally, cases occur where multiple people within the cam-
era wearer’s conversation group speak at the same time and
are both considered to be attended. Our model is able to
determine the target(s) of attention effectively in many of
these difficult cases and identifies temporal attention shifts
between attended speakers.

These visualizations additionally give insight into fail-
ure modes. Our model has difficulty in some cases where
attended and non-attended speakers are close together, and
sometimes falsely identifies people as attention targets
while the camera wearer is speaking and is not attending

to any of the visible people. These failure modes reflect the
challenging nature of our evaluation dataset and give insight
into how future work may improve upon our approach.

B. Implementation Details
B.1. Model
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Figure 1. Architecture details. Shapes are denoted as channels ×
frames × height × width.

We provide architecture details for our model in Figure
1, including the output shapes after each component and
individual layer details. Our best model (Heads & Audio
Corr + Spectogram) converges after 5 epochs and takes
approximately 1 hour per train epoch on 4 GPU’s with batch
size 32, using our input clip size of 8 visual frames with
temporal stride 3 and 24 audio frames.

B.2. Input Representations

Visual Input Representation In our experiments, we con-
sider 3 visual input representations: Image (the raw image),
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Figure 2. Visual input representations

Bbox (a binary map of the bounding boxes), and Heads (the
cropped heads from the raw image on a black background).
Visualizations of these 3 representations are shown for a
sample frame in Figure 2.
Audio Input Representation In our experiments, we con-
sider 4 audio input representations, where the representa-
tion for each audio frame corresponds to the 6-channel au-
dio segment associated with an egocentric video frame. The
input representations are Channel Corr (the channel corre-
lation features), Channel Corr + Spectogram (the chan-
nel correlation features concatenated with the real and com-
plex parts of the multichannel spectogram), ASLreal (ASL
output maps from MAVASL [9] trained on the the active
speaker labels for our dataset), and ASLsynthetic (MAVASL
ASL maps trained on a synthetic dataset for our microphone
array). We visualize these representations for a sample au-
dio frame in Figure 3. The channel correlation features cap-
ture spatial audio information by representing the cross cor-
relation between each pair of channels in the microphone
array at each time. They are calculated in the same way as
Jiang et al. [9], which finds them to be an effective spatial
audio input representation for ASL.

We augment these features with the real and complex
parts of the spectogram to include finer grained details
about the speech signals. To construct the multichannel
spectograms we calculate the real and complex parts of
the spectogram for each channel individually, SR

1 ...SR
6 and

SC
1 ...SC

6 , and concatenate these vertically to form the com-
bined real spectogram SR and complex spectogram SC .
We then concatenate SR and SC along the channel dimen-
sion with the channel correlation features C to form the
3 × 200 × 212 audio input feature for each frame. We ad-
ditionally tried concatenating SR

1 ...SR
6 ,SC

1 ...SC
6 along the

channel dimension instead of vertically along with C to
form a 13 × 200 × 212 input feature for each frame. We
found this slightly reduced performance for our best model
(81.68% mAP as opposed to 82.94% mAP).
ASLsynthetic Training For the ASL map audio input repre-
sentations, we include the ASLsynthetic input representation
in addition to ASLreal to cover both the case where an ASL
model is tuned to the dataset and when it is not. Because
microphone array setups can vary widely between systems,
an existing ASL model that uses multichannel audio may
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Figure 3. Audio input representations

not be immediately applicable or available.
The synthetic multi-channel audio training data is gener-

ated using the VCTK speech dataset [15] and the far field
ATFs (audio transfer functions) of the microphone array on
the headset. We uniformly sample all the possible sound
source directions and for each direction, we randomly se-
lect several speech samples from the VCTK dataset and
apply the corresponding ATFs to generate the audio signal
for each microphone. This is equivalent to putting a vir-
tual speech sound in each direction. We use clean speech;
we do not introduce noise and room acoustics effects. The
image data is generated using a cut-and-paste method. We
paste a “speaking” head, randomly selected from the speak-
ing heads in the EasyCom dataset [3], corresponding to the
direction of the audio signal, on a black background. We
also paste five more “non-speaking” heads from the Easy-
Com dataset in randomly selected positions in the image.
We randomize the size of the heads to simulate people at
different distances from the wearer. The ground truth 360-
degree voice activity map and the ground truth of the voice
activity map in the FOV can be easily generated using the
known direction of the speech source and placement of the
head. We use a total of 85,277 audio-visual training sam-
ples. The end-to-end training converges in 50 epochs with
learning rate 1e-4 and the Adam optimizer.

C. Dataset Details
C.1. Comparison to Prior Datasets

To our knowledge, there is no existing dataset and ac-
companying labels that support our Selective Auditory At-
tention Localization task. EgoCom [13] and EasyCom [3]
capture small group conversations with egocentric video
and multichannel audio (binaural in the case of EgoCom)
and include speech activity labels. However, both focus on
single group conversations, with EgoCom containing con-



versations among 3 people and EasyCom containing con-
versations among groups of 3-6. In these single-group con-
versation scenarios, there are rarely cases of more than one
person speaking nor are there speakers in the background
(EasyCom does include background noise played through
speakers, but there are not actual, visible people speaking in
the background), so determining auditorily attended speak-
ers can be effectively reduced to audiovisual Active Speaker
Localization. However, this reduction is not suitable for
realistic noisy conversation environments where there are
multiple speakers present. Training a model for SAAL
on these datasets therefore would not generalize to com-
plex conversation environments, and evaluating a model for
SAAL on these datasets cannot reflect the model’s ability
to identify selective auditory attention among competing
speakers. However, competing speaker environments like
restaurants and large group social settings are a main target
for downstream sound source enhancement applications. In
this work, we specifically seek to investigate selective audi-
tory attention in the presence of multiple speakers, where a
person must selectively attend to certain speaker(s) and tune
out others. We therefore choose to collect and evaluate on a
dataset that explicitly captures overlapping speech, multiple
simultaneous conversations, and visible background speak-
ers, where ASL alone cannot determine auditory attention.

The AV Diarization & Social Interactions benchmark
subset of Ego4D [6] contains a broader array of conversa-
tion scenarios captured by egocentric video and, in limited
cases, binaural audio. The dataset includes some cases with
multiple speakers and background speakers such as grocery
stores, outdoor dining areas, office hours, and group board
games. However, determining auditory attention labels for
such a dataset is subjective and ambiguous, and there are
relatively few cases that capture multiple conversations oc-
curring at once. Quantitatively, only 1.9% (65,261 frames)
of the Ego4D train dataset contains at least 2 visible speak-
ers. Ego4D does include “Talking to me” labels which iden-
tify which speaker(s) are talking to the camera-wearer and
may give insight into who the camera wearer is interacting
with and who is in the background. However, this label
is inherently different than auditory attention, which identi-
fies listening behavior. Within the Ego4D train dataset, only
0.24% (8,444) frames have a visible “talking to me” speaker
as well as another visible speaker. While the“talking to me”
labels could indicate which speakers are in a conversation
group with the camera-wearer, it is clear there are few cases
that capture competing speakers where we could potentially
determine from the labels which speaker the camera wearer
is listening to. Additionally, the Ego4D dataset largely does
not contain multichannel audio, which we find to be a crit-
ical aspect of our modeling approach. We evaluate our ap-
proach on a dataset we design to capture multi-conversation
scenarios on a large scale with selective auditory attention

labels.

C.2. Conversation Layouts
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Figure 4. Conversation layouts: Group A represents common sce-
narios where people converse only with those adjacent or across to
them, while Group B represents more challenging cross-talk sce-
narios. Group A comprises approximately 2/3 of our dataset.

We train and evaluate on a dataset of 5-person scenarios
where people converse in 2 separate conversation groups.
We illustrate the different conversation group assignments
we use in Figure 4. We design the dataset to encompass
two kinds of conversational scenarios, which are denoted as
Group A and Group B. The conversation layouts in Group
A reflect situations where separate social groups converse
in close proximity, such as at a coffee shop. In these set-
tings, there is spatial separation between the 2 groups and
people converse with those adjacent or directly across from
them. The conversation layouts in Group B represent more
challenging scenarios where the people in the different con-
versation groups must talk across each other. These are rep-
resentative of situations like a large dinner table where mul-
tiple conversations occur simultaneously. Group A layouts
comprise approximately 2/3 of our dataset and Group B lay-
outs comprise approximately 1/3. In this way, the majority
of our dataset is Group A layouts, which are simpler and
more likely occur, but the dataset also encompasses chal-
lenging cases like those in Group B.

C.3. Person Tracking, Head Bounding Box, & Ac-
tive Speaker Labels

To label our auditory attention dataset, we need to track
each person throughout the video. We take advantage of



the camera pose output from the Intel SLAM camera for
robust tracking. If people are perfectly still and the wearer
only rotates their head, we can track each person’s location
by back-projecting to 3D, rotating, and then projecting to
the 2D image. In reality, this does not work because peo-
ple move and the wearer’s head not only rotates but also
translates. Our tracking-by-detection method back-projects
head detection to the surface of a 2-meter sphere. The head
bound box detector is Yolo-v3-tiny [1] trained on images
from the Open Images dataset [12]. By using such a repre-
sentation, the tracking algorithm generates a matching cost
matrix using the current object observations and previous
position estimations. Using min-cost matching, we extend
each target’s trajectory frame-by-frame.

We use the wearer voice activity classification network
from [9] to determine voice activity for each person, giving
us the set of active speakers at each time. Because the head-
set microphones can easily pick up the sound of the cam-
era wearer speaking, we find this to be a reliable method
for determining active speakers. The model is trained syn-
thetically for our headset’s microphone array using speech
data from VCTK. The near-microphone ATFs are used to
generate positive training examples and the far-field ATFs
for negative training examples. We manually inspected the
tracking, bounding box, and speaker labels to ensure high
quality.

C.4. Unseen Environment Data Subset

To test the generalizability of our model under different
visual and acoustic conditions, we collected a small sub-
set of data in a different room, which resembled an open
kitchen area. The structure of this subset followed that of
the main dataset, with 5 participants conversing in 2 simul-
taneous conversation subgroups. The participants are dif-
ferent than those included in the main dataset. Conversa-
tion layouts from both Group A layouts and Group B lay-
outs were included (see Section C.2), and ground truth la-
bels were constructed in the same manner as in the main
dataset. However, only the 3 people in one of the conver-
sation subgroups wore headsets. In total, this subset in-
cluded 87,977 frames, or 49 minutes of data. The result
of 80.43% mAP on this dataset was obtained by running
our best model trained on the main dataset on the unseen
environment subset with no finetuning. This result shows
that our model can generalize to a different environment as
well as to cases where people are not wearing glasses.

D. Additional Baselines

In addition to the baselines described in section 4.2 we
provide two further groups of baselines. A full comparison
of all competing methods, including those described in the
main paper, is shown in Table 1.

Method mAP (%)

Perfect ASL* 47.99
CP–I* 63.55
CP–II* 51.48
CS–I* 53.86
CS–II* 49.47
LS–I* 27.78
LS–II* 30.63
FCN+ASLreal + CP 72.33
FCN+ASLsynthetic + CP 74.30
FCN+ASLsynthetic + CP + WVA* 73.32
MAVASL–I 59.11
MAVASL–II 75.20
MAVASL–III 72.90
Ours–Bbox & ASLsynthetic 75.93
Ours–Bbox & ASLreal 74.97
Ours–Bbox & Channel Corr 80.41
Ours–Bbox & Channel Corr + Spectogram 80.31
Ours–Image & ASLsynthetic 72.20
Ours–Image & ASLreal 70.04
Ours–Image & Channel Corr 76.52
Ours–Image & Channel Corr + Spectogram 76.95
Ours–Heads & ASLsynthetic 76.72
Ours–Heads & ASLreal 77.11
Ours–Heads & Channel Corr 82.35
Ours–Heads & Channel Corr + Spectogram 82.94

Table 1. Comparison results for all methods on the multi-speaker
conversation dataset. (*) denotes methods that use inputs that are
not given to our model including ground truth active speaker la-
bels, the camera wearer’s speaker activity label, and other people’s
headset audio.

(1) Fully convolutional network (FCN) combined with
ASL (FCN+ASL): We investigate the extent to which a sim-
ple convolutional architecture can solve our task with dif-
ferent types of inputs by adapting the FCN AV Network
architecture from MAVASL [9] to predict auditory attention
from a concatenation of the raw image and a pre-predicted
ASL map (either ASLreal or ASLsynthetic), and include an
additional center distance map channel to embed the center
in which each pixel’s value equals the normalized distance
to the center of the image, denoted as (CP). We additionally
include a variation where the wearer’s ground truth speech
activity is represented as an extra input channel in which
each pixel is 0 or 1 depending on wearer’s voice activity
label (WVA), which is the label for whether the wearer is
speaking or not.

(2) Selecting attended speaker based on close-
microphone speech activity: We additionally estimate
the loudness of each person relative to the camera wearer’s
position by using the audio energy of each person’s worn
microphones on their headset and their distance from the
camera wearer, as calculated by the SLAM camera. We



calculate loudness for each visible person as L = A
d2 where

A is the short-time energy from the person’s wearable mi-
crophone array (averaged across the channels) for the given
audio frame, and d is the distance between the person and
the camera-wearer, as estimated by the SLAM camera. We
construct 2 baselines that use this loudness measure: LS–I
selects the loudest speaker as attended. LS–II selects the
loudest speaker as attended unless the wearer is speaking
per the ground truth voice activity labels, in which case it
selects no people as attended. We note that this baseline
uses inputs not given to our model: the audio signals
from the headsets of the other participants, the distance
as calculated by the SLAM camera, and the ground truth
voice activity label for the camera wearer. It is thus not a
fair comparison to our model, but we include it to illustrate
that in complex conversation environments, assuming that
the loudest speaker is attended is not sufficient to solve
SAAL.

E. Real-time Applications

Our problem is motivated by the application of selec-
tive sound source enhancement, or developing devices that
can enhance certain sound sources while suppressing oth-
ers. Such a setting demands algorithms that can be run
in real-time. While we do not implement our architecture
specifically to run in real-time on a mobile device in the
scope of this work, our problem formulation reflects this
downstream application in two ways: (1) In contrast to the
AVA-Active Speaker detection problem formulation which
classifies a single head bounding box track at a time, our
model reasons about the full scene and all people at once.
Not only does this modeling choice reflect the need to rea-
son holistically about the scene to determine SAAL, but this
is also conducive to efficient real-time applications. (2) Our
architecture is a clip-based video model that runs on a short
temporal window at a time (approximately 1 second). Our
architecture can be adapted to produce frame-level predic-
tions using this short temporal history. Future work may
explore implementing our architecture as part of a real time
sound source enhancement system.

F. Societal Impact

Our work is motivated by developing wearable comput-
ing devices that can help people communicate naturally in
noisy environments, and can especially assist individuals
with hearing difficulties in day to day conversations. Re-
searchers have explored hearing enhancement systems that
allow a user to select certain sound sources to enhance us-
ing controls like head orientation, eye gaze, and hand con-
trols [2, 4, 5, 7, 8, 10, 11, 14]. By using egocentric cues to
automatically determine attended speakers as sound sources
to enhance, our work may allow more naturalistic behavior

while using such a system. We acknowledge that selective
sound source enhancement brings about important privacy
considerations. The ability to enhance certain sounds may
change notions of conversational privacy in public places,
and care must be taken in implementing devices with such
capabilities. We note that our work does not apply our algo-
rithm to an end-to-end selective sound source enhancement
system.

Additionally, in our dataset design, we avoid construct-
ing scenarios such as intentional, covert eavesdropping that
could be used to implement systems with the intent to vi-
olate privacy. We instead focus on modeling listening be-
haviors in multi-group conversation scenarios where partic-
ipants expect to be heard by others. We believe our work
has great potential for the development of devices that as-
sist people with everyday social communication, and can
especially help individuals with hearing loss.

G. Limitations & Future Work

While our work takes an important step towards selective
sound source enhancement by addressing modeling selec-
tive auditory attention from an egocentric audiovisual per-
spective for the first time, our approach has limitations. In
our dataset design, we constrain our ground truth auditory
attention labels to considering speakers within the camera
wearer’s conversation group as being attended. In reality,
this does not encompass attentional dynamics like getting
distracted by speakers in the other conversation or sounds
occurring elsewhere in the room (which falls under bottom-
up auditory attention), or simply zoning out of the conver-
sation. Because auditory attention is covert, sourcing true
labels for auditory attention that encompass all such cases is
impossible. We believe we take a practical approach to gen-
erating objective labels for selective auditory attention, and
our labels are appropriate for downstream selective sound
source enhancement applications in conversational settings.

There are several opportunities for future work in this
direction to improve upon our approach. First, our method
may be applied to settings beyond what we collect in our
dataset including larger group settings, diverse physical en-
vironments, conversing while doing other activities, chang-
ing conversation groups over time, and scenarios where
people move around the space. Additionally, we constrain
our attention modeling to in-FOV cases. While this works
well given the wide 180-degree FOV camera we use, future
work may explore expanding our model’s capabilities to
handle cases where people move beyond the wearer’s FOV.
Further work may also explore explicitly modeling longer-
term context, such as conversational turn taking and social
groupings over time, to improve predictions. We hope our
work will inspire further research in this exciting direction.
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