
RobustNeRF: Ignoring Distractors with Robust Losses4
(Supplementary Material)

6.1. Dataset Description

To investigate RobustNeRF and its baselines, we capture
and generate a collection of natural and synthetic scenes.
With the goal of reconstructing the static elements of a
scene, we capture frames both with and without distractors
present. We describe the details of the capture below.

6.1.1 Natural Scenes

We introduce four natural scenes, two captured in an apart-
ment setting, and two in a robotics lab. See Figure 1 for key
details.

Apartment (Statue & Android). To mimic a casual home
scenario, we capture two tabletop scenes in an apartment us-
ing a commodity smartphone. Both captures focus on one
or more objects on a table top, with photos taken from dif-
ferent viewpoints from a hemisphere of directions around
the objects of interest. A subset of objects on the table move
from photo to photo as described below. The photos within
each scene do not have a clear temporal order.

The capture setup is as follows. We employ an iPhone
12 mini and use ProCamera v15 to control camera expo-
sure settings. We use a fixed shutter speed of 1/60, 0.0 ex-
posure bias, and a fixed ISO of 80 or 200 for the Statue
and Android scenes, respectively. We use the iPhone’s stan-
dard wide lens with an aperture of f/1.6 and resolution of
4032x3024. A tripod is used to reduce the effects of the
rolling shutter.

The Android dataset comprises 122 cluttered photos and
10 clean photos (i.e., with no distractors). This scene de-
picts two Android robot figures standing on a board game
box, which in turn is sitting on a table with a patterned table
cloth. We pose three small wooden robots atop the table in
various ways in each cluttered photo to serve as distractors.

For the Statue scene, we capture 255 cluttered photos and
19 clean photos. The scene depicts a small statue on top of
a highly-detailed decorative box on a wooden kitchen ta-
ble. To simulate a somewhat persistent distractor, we float
a balloon over the table which, throughout the capture, nat-
urally changes its position slightly with each photo. Un-
like the Android scene, where distractors move to entirely
new poses in each frame, the balloon frequently inhabits the
same volume of space for multiple photos. The decorative
box and kitchen table both exhibit fine grained texture de-
tails.

We run COLMAP’s [?] Structure-from-Motion pipeline
using the SIMPLE RADIAL camera model. While
COLMAP’s camera parameter estimates are only approx-
imate, we find that they are sufficient for training NeRF

Clut. # Clean # Extra Paired? Res. Setting

Android 122 122 10 No 4032x3024 Apartment
Statue 255 132 19 No 4032x3024 Apartment
Crab 109 109 194 Yes 3456x3456 Robotics Lab
BabyYoda 109 109 202 Yes 3456x3456 Robotics Lab

Figure 1. Natural Scenes – Key facts about natural scenes in-
troduced in this work. Includes number of paired photos with (#
Clut.) and without (# Clean) distractors. Extra photos (# Extra) do
not contain distractors and are taken from unpaired camera poses.

models with remarkable detail.

The apartment scenes are considerably more challeng-
ing to reconstruct than the robotics lab scenes (described
below). An accurate NeRF reconstruction must model not
only the static, foreground content but also the scene’s back-
ground. Unlike the foreground, each object in the back-
ground is partially over- or underexposed and appears in a
limited number of photos. We further found it challenging
to maintain a controlled, static scene during capture. As
a result, some objects in the background move by a small,
unintended amount between photos (e.g., see Figure 3).

Robotics Lab (Crab & BabyYoda). In an effort to con-
trol confounding factors in data acquisition, we capture two
scenes in a Robotics Lab setting. In these scenes, we em-
ploy a robotic arm to randomly position a camera within
1/4 of the hemisphere over a table. The table is placed in
a closed booth with constant, indoor lighting. A series of
toys are placed on the table, a subset of which are glued to
the table’s surface to prevent them from moving. Between
photos, distractor toys on the table are removed and/or new
distractor toys are introduced.

For capture, we use a Blackfly S GigE camera with a
TECHSPEC 8.5mm C Series fixed length lens. Photos are
center-cropped from their original resolution of 5472x3648
to 3456x3456 to eliminate lens distortion. We capture 12-
bit raw photos with an aperture of f/8 and exposure time
of 650 ms. Raw photos are automatically color-calibrated
afterwards according to a reference color palette.

In each scene, we capture 109 pairs of photos from iden-
tical camera poses, one with distractors present and another
without. This results in a large number of unique distractors
which are challenging to model directly. This further allows
us to investigate the counterfactual: What if distractors were
not present? We further capture an additional ∼200 photos
from random viewpoints, not aligned with those for train-
ing and without distractors, for the purposes of evaluation.
In total, because the placement of objects is done manually,
one capture session often takes several hours.

Figure 2. Synthetic Kubric Scenes – Example Kubric synthetic
images for three datasets with different ratio of outlier pixels. The
sofa, lamp, and bookcase are static objects in all three setups. The
easy setup has 1 small distractor, the medium setup has 3 medium
distractors, and the hard setup has 6 large distractors.

6.1.2 Synthetic Scenes

We generate three Kubric [?] scenes similar to the D2NeRF
synthetic scenes with different difficulty levels: easy,
medium, and hard. These datasets are used to ablate our
method with control on the proportion of outlier occupancy
(see Sec. 6.3.3).

Each dataset contains 200 cluttered images for training
and 100 clean images for evaluation. In all three scenes the
static objects include a sofa, a lamp and a bookshelf. Fig-
ure 2 shows one example image from the training set for
each dataset. The easy scene contains only one small dis-
tractor object (a bag). This dataset is similar to Kubric Bag
dataset of D2NeRF. The medium scene has three distrac-
tors (a bag, a chair, and a car) which are larger in size and
hence the outlier occupancy is 4× the outlier occupancy of
the easy scene. The hard scene has six large distractors (a
bag, a chair, and four cars). They occupy on average 10×
more pixels than the easy setup, covering roughly half of
each image.

6.2. Training Details

While camera parameters are estimated on the full-
resolution imagery, we downsample images by 8x for each
natural scene dataset. While mip-NeRF 360 and Robust-
NeRF are capable of training on high resolution photos, we
limit the resolution to accommodate D2NeRF. Unless oth-
erwise stated, we train on all available cluttered images, and
evaluate on a holdout set; i.e., 10 images for Android; 19 for
the Statue dataset; 194 for Crab; and 202 for the BabyYoda
dataset (see Figure 1).

RobustNeRF. We implement RobustNeRF by incorporat-
ing our proposed loss function into the MultiNeRF code-
base [?], replacing mip-NeRF 360’s [?] reconstruction loss.
All other terms in the loss function, such as regularizers, are
included as originally published in mip-NeRF 360.

We train RobustNeRF for 250,000 steps with the Adam
optimizer, using a batch size of 64 image patches randomly
sampled from training images. Each pixel within a 16x16
patch contributes to the loss function, except those identi-

fied as outliers (see ?? for a visualization). The learning
rate is exponentially decayed from 0.002 to 0.00002 over
the course of training with a warmup period of 512 steps.

Our model architecture comprises a proposal Multilayer
Perceptron (MLP) with 4 hidden layers and 256 units per
layer, and a NeRF MLP with 8 hidden layers, each with
1024 units. We assign each training image a 4-dimensional
GLO vector to account for unintended appearance variation.
Unless otherwise stated, we use the robust loss hyperparam-
eters given in the main body of the paper. All models are
trained on 16 TPUv3 chips over the course of 9 hours.

mip-NeRF 360 [?]. We use the reference implementation
of mip-NeRF 360 from the MultiNeRF codebase. Simi-
lar to RobustNeRF, we train each variant of mip-NeRF 360
with the Adam optimizer, using the same number of steps,
batch size, and learning rate schedule. mip-NeRF 360 uses
a random sample of 16384 rays per minibatch. Proposal
and NeRF MLP depth and width are identical to those for
RobustNeRF. Training hardware and duration are also the
same as RobustNeRF.

D2NeRF [?]. We use the reference implementation of
D2NeRF [?] provided by the authors. Model architecture,
hierarchical volume sampling density, and learning rate are
the same as published in [?]. As in the original work, we
train the model for 100,000 iterations with a batch size of
1024 rays, though over the course of 3 hours. Due to hard-
ware availability, we employ four NVIDIA V100 GPUs in
place of the A100 GPUs used in the original work.

Images are kept in the order of provided by the file
system (i.e., ordered by position information alphanumer-
ically). However, this image order is not guaranteed to rep-
resent a continuous path in space since the images were not
captured along a continuous path, but rather at random loca-
tions. Below we discuss the effects of random ordering ver-
sus ordering the views along a heuristically identified path.

D2NeRF training is controlled by five key hyperparam-
eters, namely, skewness (k), which encourages a binariza-
tion loss to favor static explanations, and four regularization
weights that scale the skewed binarization loss (λs), ray reg-
ularization loss (λr), static regularization loss (λσs), and the
view-correlated shadow field loss (λρ). A hyperparameter
search is performed in D2NeRF for 16 real world scenes to
identify combinations best suited for each scene, and four
primary configurations of these parameters are identified as
optimal. In particular, the first configuration (i.e., k = 1.75,
λs = 1e−4 → 1e−2, λr = 1e−3, λσs = 0, and λρ = 1e−1)
was reported to be most effective across the largest number
of scenes real world (10 of 16). We additionally conduct a
tuning experiment (see Figure 5) and confirm the first con-
figuration as best suited. We apply this configuration in all
additional D2NeRF experiments.

Figure 3. Challenges in Apartment Scenes – Each row, from left to right, shows a ground truth photo, a RobustNeRF render, and
the difference between the two. Best viewed in PDF. (Top) Note the fold in the table cloth in ground truth image and the lack of fine-
grained detail on the covered chair in the background. The table cloth moved during capture, and the background was not captured
thoroughly enough for a high-fidelity reconstruction. (Bottom) The ground truth image for the Statue dataset exhibits overexposure and
color calibration issues, and hence do not exactly match the RobustNeRF render.

6.3. Experiments

6.3.1 Comparison to mip-NeRF 360

In experiments on natural scenes, as reported in ??, the per-
formance gap between mip-NeRF 360 (Ch.) and Robust-
NeRF is markedly higher for the two scenes captured in the
robotics lab (i.e., Crab, BabyYoda), compared to those in
the apartment (i.e., Statue, Android). We attribute this to the
difficulty in reconstructing the apartment scenes, regardless
of the presence of distractors. This statement is supported
by metrics for reconstruction quality of a mip-NeRF 360
model trained on clean, distractor-free photos. In particular,
while mip-NeRF 360 achieves over 32 dB PSNR on Crab
and BabyYoda scenes, its PSNR is nearly 10 dB lower on
Statue and Android.

Upon closer inspection of the photos and our reconstruc-
tions, we identified several reasons for this. First, the apart-
ment scenes contain non-trivial background content with
3D structure. As the background was not the focus of these
captures, background content is poorly reconstructed by all
models considered. Second, background content illumi-
nated by sunlight is overexposed in some test images (see
Figure 3). While this challenge has already been addressed
by RawNeRF [?], we do not address it here as it is not a
focus of this work. Lastly, we find that some static objects
were unintentionally moved during our capture. The most

Crab BabyYoda

Order 1 0.43 0.66 20.19 0.44 0.66 18.17
Order 2 0.42 0.68 20.95 0.44 0.66 17.13

Figure 4. Effect of Image Order on D2NeRF – As this model
is based on space-time NeRFs [?], to make it compatible with our
setting we create a ’temporal’ indexing of the photos. Here, we
visualize: (left) with our heuristic ordering; (right) with another
random order. We observe similar distractor-related artifacts in
both cases.

challenging form of this is the movement of a table cloth
prominently featured in the Android scene which lead to
perturbed camera parameter estimates (e.g., see Figure 3).

Statue Crab

Config 1 0.48 0.49 19.09 0.42 0.68 21.18
Config 2 0.49 0.48 18.20 0.51 0.59 17.02
Config 3 0.51 0.47 18.28 0.46 0.63 19.01
Config 4 0.49 0.48 18.18 0.49 0.58 16.77

Config # k λs λr λσs λρ

Config 1 1.75 1e-4 → 1e-2 1e-3 0 1e-1
Config 2 3 1e-4 ⇒ 1 1e-3 0 1e-1
Config 3 2.75 1e-5 ⇒ 1 1e-3 0 -
Config 4 2.875 5e-4 ⇒ 1 0 0 -

Figure 5. D2NeRF HParam Tuning – The performance of
D2NeRF is heavily influenced by the choice of hyperparameters.
In particular, optimal choices of hyperparameters are noted to be
strongly influenced by the amount of object and camera motion,
as well as video length. We tune by applying four recommended
configurations, and identify the first as optimal across the Statue
and Crab datasets. Please note that → indicates linear increase in
value and ⇒ indicates exponential increase in value.

6.3.2 Comparison to D2NeRF

Unlike RobustNeRF, D2NeRF makes use of a time signal
in the form of provided appearance and warp IDs to gen-
erate a code as additional input to the HyperNeRF model.
This explicitly models dynamic content alongside the static
component of the scene. Two assumptions of D2NeRF are
broken in our datasets: 1) the objects sporadically appear
(by design); and 2) the views are not necessarily captured
in a video-like order. Sporadic object appearance is cen-
tral to our task, so we do not ablate this property. However,
we do evaluate the effect of heuristically reordering cam-
era views according to z position and radial angle of the
robotic arm, thereby producing an image order for an imag-
ined ”continuous” path. As a control, we pseudorandomly
scramble the view order, and train D2NeRF in both settings.
The results for BabyYoda and Crab can be seen in Figure 4.
We observe no consistent discernable improvement in per-
formance as a result of view reordering and hypothesize that
the major hurdle for D2NeRF is rather the modeling of spo-
radic artifacts.

We also evaluate the effect of applying the four hyper-
parameter configurations provided by D2NeRF [?]. We
observe, as expected, that the first configuration performs
best across our datasets. Due to limited access to appro-
priate compute architecture for D2NeRF, we were not able
to tune every scene, but selected configuration 1 for all ex-
periments as it performed best in 10/16 real world scenes
for D2NeRF as well as tuning experiments on two of our
example datasets as see in in Figure 5.

Figure 6. Sensitivity to Tϵ – RobustNeRF’s reconstruction quality
as a function of Tϵ on scenes with different inlier/outlier propor-
tions. Overestimating Tϵ increases training time without affecting
final reconstruction accuracy.

Neigh./Patch 4/2 8/4 16/2 16/4 16/8

TR = 0.6 18.3 23.08 30.22 30.35 30.75
TR = 0.8 28.28 30.7 30.72 30.69 30.72

Figure 7. Sensitivity to hyper-parameters. PSNR on distractor-
free frames on the Crab dataset as a function of RobustNeRF’s
neighborhood size, patch size, and TR.

6.3.3 Sensitivity to Hyperparameters

We find that the choice of thresholds and filter sizes, de-
scribed in Section ??, suffices for a wide range of datasets.
As long as the threshold Tϵ is greater than the proportion of
outlier pixels in a dataset, RobustNeRF will reliably iden-
tify and ignore outlier pixels; see Figure 6. Easy has less
than 10% outlier pixels so any Tϵ less than 80% works. In
the medium case at least a Tϵ of 60% is required to remove
the outliers. In the hard case 44% of pixels are on average
occupied so any Tϵ above 50% has worse results. Training
with less than 50% of the loss slows down training signifi-
cantly. Therefore, we observe that after the 250k iterations
the model has not converged yet. On average training with
30% of loss requires twice the number of training iterations
to catch up. In contrast, D2NeRF requires careful, manual
hyperparameter tuning for each scene (e.g., see Figure 5)
for several hyperparameters. In our experiments, we found
that a single setting of neighborhood and patch sizes works
well across all scenes. We present model performance as
a function of both hyperparameters on Crab in Figure 7.
Larger neighborhood sizes are better regularizers, and we
are bounded by the amount of device memory available.

6.3.4 View-dependent effects

We experimentally observed that RobustNeRF performs
similarly to mip-NeRF 360 in reconstructing scenes with
non-Lambertian materials, semi-transparent objects, and
soft shadows. These phenomena are present in the Statue
scene (tabletop is glossy), and the toys in the Crab and
BabyYoda scenes which cast soft shadows.

Figure 8. Qualitative results on scenes with view-dependent ef-
fects. RobustNeRF naturally captures view-dependent effects in
scenes with (3rd-6th rows) and without (1st and 2nd row) distrac-
tors.

To further emphasize these qualities, we include results
for additional scenes with glass, metallic, and reflective
objects in Figure 8. The first scene is captured with our
Robotic rig, similar to Crab and BabyYoda scenes. It con-
tains a mirror, a shiny cylinder, a transparent vase and a
glossy ceramic mug. The other two datasets are captured in
the wild. One is with a mirror while pedestrians are mov-
ing (as distractions). The last scene contains a transparent
pitcher as the object of interest, while the photographer’s
body parts appear in the photos as the distractors.

6.3.5 More Qualitative Results

We render images from different NerF models from more
viewpoints from each of our datasets to further expand
the comparison with baselines, D2NeRF, and RobustNeRF.
Looking at Figures 10 through 13 one can see that D2NeRF
is only able to remove the outliers when there is a single dis-
tractor object (Statue dataset) and it fails on the other three

Figure 9. Qualitative results on D2NeRF Pick scene. Renders
of static model components. Results for NeRF-W and D2NeRF
are provided by [?]. Note how RobustNeRF naturally captures
specular reflections and shadows (green, right).

datasets. The Android dataset has three wooden robots with
articulated joints as distractors, and even in this setup where
the texture of the distractor objects are similar to one an-
other, D2NeRF fails to fully remove the outliers. In compar-
ison, RobustNeRF is able to remove the outliers irrespective
of their number and diversity.

For all four datasets mip-NeRF 360, with either L1, L2,
or Charbonnier loss, fails to detect the outliers; one can see
’clouds’ or even distinct floaters for these methods. The
worst performing loss is L2, as expected. L1 and Charbon-
nier behave similarly in terms of outlier removal. Changing
the loss to RobustNeRF eliminates the floaters and artifacts
in all datasets. Video renderings for these scenes are also in-
cluded in the zipfile with the supplementary material. The
floaters in mip-NeRF 360 are easier to resolve in the videos.

We have also experimented on the D2NeRF natural
scenes in [?]. The qualitative samples are shown in
Figure 9. We find that RobustNeRF produces plausible,
distraction-free models.

Figure 10. Statue – Qualitative results on Statue. It is helpful to zoom in to see details.

Figure 11. Android – Qualitative results on Android. It is helpful to zoom in to see details.

Figure 12. Crab – Qualitative results on Crab. It is helpful to zoom in to see details.

Figure 13. BabyYoda – Qualitative results on BabyYoda. It is helpful to zoom in to see details.

	. Dataset Description
	Natural Scenes
	Synthetic Scenes

	. Training Details
	. Experiments
	Comparison to mip-NeRF 360
	Comparison to D2NeRF
	Sensitivity to Hyperparameters
	View-dependent effects
	More Qualitative Results

