
A. Appendix
A.1. Proof for Lemma 1

At the optimal decision boundary the probabilities of any
point x ∈ Rd belonging to class y = −1 and y = 1 mod-
eled by D are the same. Here, µ = µ1 = −µ−1 and
I = Σ−1 = Σ1.

=⇒
exp[− 1

2 (x− µ−1)
⊤Σ−1

−1(x− µ−1)]√
(2π)d|Σ−1|

=

exp[− 1
2 (x− µ1)

⊤Σ−1
1 (x− µ1)]√

(2π)d|Σ1|

=⇒ −1

2
log |I| − 1

2
(x⊤x− 2x⊤µ−1 + µ⊤

−1µ−1) =

− 1

2
log |I| − 1

2
(x⊤x− 2x⊤µ1 + µ⊤

1 µ1)

=⇒ x⊤(µ−1 − µ1)−
1

2
(µ⊤

−1µ−1 − µ⊤
1 µ1) = 0

=⇒ −x⊤µ = 0

=⇒ P (x) ≡ x⊤µ = 0.

Now, the accuracy of the clean model P is to be com-
puted. Note that if P (x) < 0 the Bayes optimal classi-
fication is class -1, else the classification is class 1. Let
z ∼ N (0, I), and Z ∼ N (0, 1), and sgn(.) be the signum
function.

τD(P ) = E(x,y)∼D [1(y = sgn(P (x)))] = P[yx⊤µ > 0]

= P[y(yµ+ z)⊤µ > 0]

= P[(µ+ z)⊤µ > 0]

= P[∥µ∥22 + ∥µ∥2Z > 0] = ϕ(∥µ∥2).

□

A.2. Proof for Lemma 2

Let D1 = N (µ, I). For every data point (x, y) ∼ D1, let
the perturbed data (A1x, y) be modelled by a distribution
D̃1. We prove that D̃1 = N (A1µ, A

⊤
1 A1).

E(x,y)∼D1
A1x = A1E(x,y)∼D1

x = A1µ.

E(x,y)∼D1
(A1x−A1µ)(A1x−A1µ)

⊤

= E(x,y)∼D1
A1(x− µ)[A1(x− µ)]⊤

= E(x,y)∼D1
A1(x− µ)(x− µ)⊤A⊤

1

= A1E(x,y)∼D1
(x− µ)(x− µ)⊤A⊤

1

= A1IA
⊤
1 = A1A

⊤
1 .

Tri-diagonal Toeplitz matrices Ay = T (d; ay, 1, ay) are
symmetric. Hence, D̃ = N (yAyµ, A

2
y). □

A.3. Remarks on Lemma 3

A tri-diagonal Toeplitz matrix T (d; a1, a2, a3) is repre-
sented as

a2 a3 0 0 . . . 0
a1 a2 a3 0 . . . 0
0 a1 a2 a3 . . . 0
...

...
...

...
. . .

...
0 . . . . . . 0 a1 a2

 ∈ Rd×d

The class of matrices Ay = T (d; ay, 1, ay) are sym-
metric and can be diagonalized as QDQ⊤. Q =((

2
d+1

)1/2
sin

(
ijπ
d+1

))
i,j

is symmetric and it is the com-
mon eigenvector matrix to all Ay matrices. As shown in
Lemma 3, Q and D can be represented using trigonomet-
ric functions. Also, we have A(n) := An

1 ± An
−1 =

Q(Dn
1 ±Dn

−1)Q where A1 = QD1Q and A−1 = QD−1Q.
Further, Tr(A(n)) = Tr(Q(Dn

1 ± Dn
−1)Q) = Tr((Dn

1 ±
Dn

−1)Q
2) = Tr(Dn

1 ±Dn
−1).

A.4. Proof for Lemma 4

At the optimal decision boundary the probabilities of any
point x ∈ Rd belonging to class y = −1 and y = 1 mod-
eled by D̃ are the same. Here, µ = µ1 = −µ−1 and Ay’s
are symmetric.

exp[− 1
2 (x−A−1µ−1)

⊤(A−1IA
⊤
−1)

−1(x−A−1µ−1)]√
(2π)d|A−1IA⊤

−1|

=
exp[− 1

2 (x−A1µ1)
⊤(A1IA

⊤
1 )

−1(x−A1µ1)]√
(2π)d|A1IA⊤

1 |

=⇒ −1

2
ln

|A2
−1|

|A2
1|

− 1

2
[x⊤(A−2

−1 −A−2
1 )x

− 2(µ⊤
−1A

−1
−1 − µ⊤

1 A
−1
1 )x

+ (µ⊤
−1µ−1 − µ⊤

1 µ1)] = 0

=⇒ P̃ (x) ≡ x⊤(A−2
−1 −A−2

1 )x

− 2(µ⊤
−1A

−1
−1 − µ⊤

1 A
−1
1 )x+ (∥µ−1∥22 − ∥µ1∥22)

+

d∑
i=1

ln

(
1 + 2a−1 cos(

iπ
d+1 )

1 + 2a1 cos(
iπ
d+1 )

)2

= 0

=⇒ P̃ (x) ≡ x⊤(A−2
−1 −A−2

1 )x

+ 2[(A−1
−1 +A−1

1 )µ]⊤x

+

d∑
i=1

ln

(
1 + 2a−1 cos(

iπ
d+1 )

1 + 2a1 cos(
iπ
d+1 )

)2

= 0

=⇒ P̃ (x) ≡ x⊤Ax+ b⊤x+ c = 0.

□
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Note that here if P̃ (x) < 0, the Bayes optimal classi-
fication is class -1, else the classification is class 1. Here,
for shorthand notations we denote A = (A−2

−1 −A−2
1 ), b =

2(A−1
−1 +A−1

1 )µ, c =
∑d

i=1 ln

(
1 + 2a−1 cos(

iπ
d+1 )

1 + 2a1 cos(
iπ
d+1 )

)2

.

A.5. Proof for Lemma 5

Let Z = z⊤Az+z⊤b+c and z ∼ N (0, I) ⊂ Rd where
A = QΛQ⊤. Also,

Z = z⊤Az + z⊤b+ c

=

(
z +

1

2
A−1b

)⊤

A

(
z +

1

2
A−1b

)
+ c− 1

4
b⊤A−1b.

For any t ≥ 0 and x ∼ N (0, I), we write the moment
generating function for a quadratic random variable Y =
x⊤Ax as 2

E[exp(tY )] =
1

(2π)d/2

∫
Rd

exp{tx⊤Ax}

exp
{
− 1

2
(x− µ)⊤(x− µ)

}
dx

=
exp{−µ⊤µ/2}

(2π)d/2

∫
Rd

exp
{
− 1

2
x⊤(I − 2tA)x+ µ⊤x

}
dx

=
exp{−µ⊤µ/2}

(2π)d/2

(2π)d/2 exp
{

1
2µ

⊤(I − 2tA)−1µ
}

|I − 2tA|1/2

=
exp

{
− 1

2µ
⊤[I − (I − 2tA)−1]µ

}
|I − 2tA|1/2

.

=⇒ E[exp(tZ)] =

exp{−b⊤

8 A−1[I − (I − 2tA)−1]A−1b+ t[c− b⊤

4 A−1b]}
|I − 2tA| 12

.

Using the Chernoff bound and E z⊤Az =
Tr(AE[zz⊤]) = Tr(A), for some γ,

P{Z ≥ E[Z] + γ} ≤ E[exp(tZ)]

exp{t[γ + E(Z)]}
=

exp{−b⊤

8 A−1[I − (I − 2tA)−1]A−1b+ t[c− b⊤

4 A−1b]}
exp{t([γ +Tr(A) + ∥b∥2 + c]}|I − 2tA| 12

.

Let us take u = Q⊤b. Also, −Λ−1[I − (I −
2tΛ)−1]Λ−1 = 2tΛ−1(I − 2tΛ)−1 since Λ is a diag-
onal matrix. Using Woodbury matrix identity, we get
(I − 2tΛ)−1 = I − (I − 1

2tΛ
−1)−1. This gives us

2 [46]

P{Z ≥ E[Z] + γ} ≤

exp{−1

8
b⊤A−1[I − (I − 2tA)−1]A−1b

+ t[c− 1

4
b⊤A−1b]} exp{−t[γ +Tr(A) + ∥b∥2 + c]}

|I − 2tA|
−1
2

= exp{−1

8
u⊤Λ−1[I − (I − 2tΛ)−1]Λ−1u

+ t[c− 1

4
u⊤Λ−1u]} exp{−t[γ +Tr(Λ) + ∥b∥2 + c]}

|I − 2tΛ|
−1
2

= exp{ t
4
u⊤Λ−1(I − 2tΛ)−1u

+ t[c− 1

4
u⊤Λ−1u]} exp{−t[γ +Tr(Λ) + ∥b∥2 + c]}

|I − 2tΛ|
−1
2

= exp{ t
4
u⊤Λ−1[I − (I − 1

2t
Λ−1)−1]u

+ t[c− 1

4
u⊤Λ−1u]} exp{−t[γ +Tr(Λ) + ∥b∥2 + c]}

|I − 2tΛ|
−1
2

=
exp{−t

4 u⊤Λ−1(I − 1
2tΛ

−1)−1u+ tc}
exp{t[γ +Tr(Λ) + ∥b∥2 + c]}|I − 2tΛ| 12

≤

exp{ −t

4∥b∥22
λmin(Λ

−1(I − 1

2t
Λ−1)−1)

− t(γ +Tr(Λ) + ∥b∥2)}|I − 2tΛ|
−1
2

= exp{ −t

4∥b∥22
1

∥Λ∥ − 1/(2t)
− t(γ +Tr(Λ) + ∥b∥2)}

|I − 2tΛ|
−1
2 ≤

exp{ −t
4∥b∥2

2∥Λ∥ − t(γ +Tr(Λ) + ∥b∥2)}

|I − 2tΛ| 12
.

□

A.6. Proof for Theorem 2

Note that if P̃ (x) < 0, the classifier predicts a label for
class -1, else the predicted label would be 1. Here, x =
yµ + z where z ∼ N (0, I) and y ∈ {±1} since (x, y) ∼
D.
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τD(P̃ ) = E{1(y(x⊤Ax+ b⊤x+ c) > 0)}
= P{y(µ⊤Aµ+ z⊤Az + 2yµ⊤Az+

yb⊤µ+ b⊤z + c) > 0}
= P(y = 1) P{y(µ⊤Aµ+ z⊤Az

+ 2yµ⊤Az + yb⊤µ+ b⊤z + c) > 0 | y = 1} +

P(y = −1) P{y(µ⊤Aµ+ z⊤Az

+ 2yµ⊤Az + yb⊤µ+ b⊤z + c) > 0 | y = −1} =

1

2
P{z⊤Az + (b+ 2Aµ)⊤z + µ⊤Aµ+ b⊤µ+ c > 0} +

1

2
P{−z⊤Az − (b− 2Aµ)⊤z − µ⊤Aµ+ b⊤µ− c > 0}

:= p1 + p2

We can see that

− γ1 :=

E{z⊤Az + (b+ 2Aµ)⊤z + µ⊤Aµ+ b⊤µ+ c}
= Tr(Λ) + ∥b+ 2Aµ∥2 + µ⊤Aµ+ b⊤µ+ c, and
− γ2 :=

E{−z⊤Az − (b− 2Aµ)⊤z − µ⊤Aµ+ b⊤µ− c}
= − Tr(Λ) + ∥b− 2Aµ∥2 − µ⊤Aµ+ b⊤µ− c.

Using Lemma 5, with γ = γ1, t = t1 for computing p1
and γ = γ2, t = t2 for computing p2 where t1, t2 are some
non-negative constants, we get

p1 =
1

2|I − 2t1Λ|1/2
exp

[
t1

(
µ⊤Aµ+ b⊤µ+ c

− 1

4∥2Aµ+ b∥2∥Λ∥

)]
, and

p2 =
1

2|I − 2t2Λ|1/2
exp

[
t2

(
− µ⊤Aµ+ b⊤µ− c

− 1

4∥2Aµ− b∥2∥Λ∥

)]
.

This gives us the upper bound for τD(P̃ ). However,
to make sure that this upper bound is smaller than 1, we
need to assert more conditions. p1 and p2 become smaller
as γ1 and γ2 are larger positive numbers. However, γ1 +
γ2 = −(∥2Aµ + b∥2 + ∥2Aµ − b∥2 + 4µ⊤Q⊤(D−1

1 +
D−1

−1)Qµ) ≤ 0 since (D−1
1 + D−1

−1) ≽ 0. Hence, we look
at separately at cases when either γ1 > 0 or γ2 > 0.

If γ1 > 0, then τD(P̃ ) = 1
2 (p1+1) < 1. Else, if γ2 > 0,

then τD(P̃ ) = 1
2 (p2 + 1) < 1. We know that for µ ̸= 0,

τD(P ) = ϕ(µ) > 1
2 . Moreover, for any a−1 ∈ [0, 0.5], ∃a1

such that τD(P̃ ) < τD(P ). This can be satisfied by picking

a1 such that either γ1 or γ2 is very large, i.e., 1
2 < τD(P̃ ) =

1
2 [1 + min(p1, p2)] < τD(P ). We note that the conditions
−γ1 = µ⊤Aµ+ b⊤µ+ c+Tr(A)+ ∥2Aµ+ b∥2 < 0 and
−γ2 = −µ⊤Aµ + b⊤µ − c − Tr(A) + ∥2Aµ − b∥2 < 0
can always be satisfied by picking a sufficiently large µ in
the direction of an eigenvector corresponding to a negative
eigenvalue of A (note that A has negative eigenvalues). □

A.7. Details on generating Figure 3

We use µ ∈ Rd, d = 100 to generate clean dataset
with 1000 data points. They are randomly split into train-
ing and testing partitions of equal size. All the assump-
tions are consistent with the details provided in the main
body. We use 30 × 30 mesh-grid to plot the contour
plots. While plotting the theoretical upper bounds, we
choose the best t1, t2 with grid search from a search space
[21, 20, 2−1, 2−2, 2−3, 2−4, 2−5].

A.8. Experimental details

This subsection provides the details for experiments in
Section 5.

Hardware. We use NVIDIA® RTX A4000 GPU with
16GB memory with 16 AMD® EPYC 7302P CPU cores.

Data augmentations. For CIFAR-10 and CIFAR-100,
we use random flipping, 4 pixel padding, and random
32 × 32 size cropping. For ImageNet-100, we use random
flipping and random cropping with resizing to 224 × 224
size. All the images are rescaled to have pixel values in the
range [0, 1].

Baselines. We compare CUDA against error-minimizing
noise [17], targeted adversarial poisoning [10], neural tan-
gent generalization attack [55], and robust error-minimizing
noise [11]. We use the experimental outputs reported in [11]
for our comparisons. For REM we choose ρu = 8/255 and
ρa = 4/255 since REM works the best when ρu = 2ρa
[11]. We perform experiments on REM not present in their
work using their code available publicly on GitHub 3 (MIT
License).

Networks. For consistency, we use the same architec-
tures used in [11]. We use their GitHub script4 for this pur-
pose.

Training. We train all the networks for 100 epochs. The
initial learning rate is 0.1. Learning rate decays to 0.01 at
epoch 40 and to 0.001 at epoch 80. We use a stochastic
gradient descent optimizer with a momentum factor of 0.9,
weight decay factor of 0.0005, and batch size of 128. For
adversarial training, we follow the procedure in [34]. We
use 10 steps of projected gradient descent with a step size
of 0.15ρa.

3https://github.com/fshp971/robust-unlearnable-
examples

4https://github.com/fshp971/robust-unlearnable-
examples/tree/main/models
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Analysis of CUDA. For grayscaling experiments, we use
images with their average channel values as the input to the
network. Test accuracy is computed on the grayscaled test
datasets. For smoothing, we use the GitHub codes5 from [6]
(MIT License). For mixup [58], we use the default value of
α = 1.0.

Deconvolution-based adversarial training (DAT). We
experiment with various filter sizes of 3,5, and 7 for the
transpose convolution filters. For each batch of data, we use
10 steps of projected gradient descent with a learning rate
of 0.1 to learn transpose convolution filters for each class.
The weights and biases of the transpose convolution filters
are constrained to be within [−C,C]. We choose C = 5.
After 10 steps of inner maximizing optimization, the result-
ing image is rescaled such that the pixel values lie in [0, 1].
See Figure 4 for clean test accuracy vs. epochs plot for
DAT with varying transpose filter sizes. As seen in Figure
1, DAT can break CUDA CIFAR-10 with a low blur param-
eter value of pb = 0.1 to get a clean test accuracy ∼78%.
However, with higher pb values DAT can not achieve more
than 50% clean test accuracy. DAT solves the following op-
timization problem:

argmin
θ

1

n

∑
k∈[K]

max
∥sk∥∞≤C

∑
i:yi=k

ℓ(fθ(xi ⋆ sk), k) (3)

where ⋆ denotes the transpose convolution operator, syi

denotes the transpose convolution filter for class yi, and ℓ is
the soft-max cross-entropy loss function.

CUDA with augmentations. We use mixup with the
default α = 1.0 [58]. See Figure 5 for the training curve.
For random blurring augmentations, we use p′b = 0.1, 0.3
and k = 3. With both these parameters, CUDA is seen to be
effective. See Figure 5 for the training curve with p′b = 0.3.

A.9. More experimental results

Figure 6 shows the CUDA CIFAR-10 data generated us-
ing k = 3 and different pb blur parameters. Figure 7 shows
the CUDA CIFAR-100 and CUDA ImageNet-100 data gen-
erated using k = 3, pb = 0.3 and k = 9, pb = 0.06, respec-
tively. Figure 8 shows the clean test accuracy of ResNet-18
with CUDA CIFAR-10 generated using different blur pa-
rameters. As we see in the plots, higher the blur param-
eter, better the effectiveness of CUDA is. However, we
choose pb = 0.3 for our experiments since the the images
generated using this hyperparameter look perceptibly more
similar to the clean images (when compared to pb = 0.5)
while giving a very low clean test accuracy. A lower value
of pb = 0.1 gives better unlearnability. However, CUDA
CIFAR-10 generated using pb = 0.1 is not robust with

5https : / / github . com / Hadisalman / smoothing -
adversarial

our Deconvolution-based Adversarial Training, as shown in
Figure 1. Figure 9 shows the clean test accuracy of ResNet-
18 with CUDA ImageNet-100 dataset generated using dif-
ferent filter sizes. Figure 10 shows the adversarial training
curves for ResNet-18 with different CUDA datasets.

We show the effectiveness of CUDA with Tiny-
ImageNet [26], DeIT [50], EfficientNetV2 [48], and Mo-
bileNetV2 [41] below.

Model ERM L2 AT (ϵ = 0.5)
DeIT [50] 24.85 % 38.90 %

EfficientNetV2-S [48] 20.47 % 42.19 %
MobileNetV2 [41] 21.10 % 32.00 %

Table 6. Effectiveness of CUDA on CIFAR-10.

Training method Clean CUDA
ERM 48.14 % 5.98 %

L2 AT (ϵ = 0.5) 42.72 % 14.54 %

Table 7. Effectiveness of Tiny-ImageNet CUDA with ResNet-18.
We use the same hyperparameters as our CIFAR experiments.

A.10. Effects of blurring

Here, we study the effects of blurring. We investigate
if class-wise blurring is required for achieving unlearnabil-
ity. For this, we use a universal filter (generated using the
same pb = 0.3 and k = 3 hyperparameters) to blur all the
training images in the dataset. A ResNet-18 trained on this
dataset achieves a clean test accuracy of 90.47%. Essen-
tially, the blurring that is performed only degrades the clean
test accuracy by ∼4%. This means that class-wise blurring
(CUDA) is required for achieving the unlearnability effect
(see Figure 11). This experiment also demonstrates that the
blurring we perform does not make the dataset useless or
destroy its semantics. For this experiment, we use models
with fixed initialization and random seeds.

A.11. Why does CUDA work?

In this section, we perform experiments that show that a
model trained on CUDA dataset learns the relation between
the class-wise filters and the labels. We train ResNet-18 us-
ing the CUDA CIFAR-10 dataset for the experiments. We
perform three independent trials for each of the experiments
and report the mean performance scores. Trained models
achieve a mean clean test accuracy of 21.34%. Now, we
use the class-wise filters to perturb the images in the test
set based on their corresponding labels. Trained models
achieve a very high mean accuracy of 99.91% on this per-
turbed test set. This shows that the trained models learned
the relation between the filters and their corresponding la-
bels. Next, we permute the filters to perturb the test set such
that test set images with label i are perturbed with the filters
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Figure 4. CUDA CIFAR-10 images (k = 3, pb = 0.3) trained using ResNet-18 with the Deconvolution-based Adversarial Training
framework with varying transpose convolution filter sizes k.

Figure 5. CUDA CIFAR-10 images (k = 3, pb = 0.3) trained using ResNet-18 with mixup and random blurring augmentations.

of class (i + 1)%10. Trained models achieve a very low
mean accuracy of 2.53% on this perturbed test set. This is
evidence that CUDA can also be used for backdoor attacks.

A.12. Effect of transfer learning

In this section, we experiment the effect of using a pre-
trained ResNet-18 with PyTorch [38]. We train it on the
CUDA CIFAR-10 dataset in two different ways. First, we
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(a) pb = 0.1

(b) pb = 0.3

(c) pb = 0.5

Figure 6. CUDA CIFAR-10 images generated using different blur parameters pb. The top row shows the clean images, the bottom row
shows the corresponding CUDA image, and the middle row shows the normalized difference between the clean and the CUDA image.

fine-tune the whole network on the CUDA dataset with a
learning rate of 0.001 for 15 epochs. This achieves a clean
test accuracy of 42.42%. Fine-tuning the network with
clean training data gives 94.19% clean test accuracy. Next,
we freeze all the layers except the final layer to train a lin-
ear classifier with the pre-trained weights using the CUDA
CIFAR-10 dataset. We call this “Freeze and learn”. We use
a SGD optimizer to train the linear layer for 15 epochs with
an initial learning rate of 0.1. The learning rate is decayed
by a factor of 10 after every 5 epochs. This achieves a clean
test accuracy of 48.22%. The results are shown in Figure
12. This experiment shows that pre-trained network with

CUDA data training does not help achieve good generaliza-
tion on the clean data distribution.

A.13. Effect of CUDA with regularization tech-
niques

In this section, we study the effect of training a ResNet-
18 with CUDA CIFAR-10 dataset using various regular-
ization techniques such as mixup [58], cutout [9], cut-
mix [56], autoaugment [7], and orthogonal regularization
[3]. We perform mixup, cutout, cutmix, autoaugment,
and orthogonal regularization to achieve 25.53%, 25.80%,
26.93%, 34.09%, and 50.72%. Even though these regular-
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(a) CIFAR-100

(b) ImageNet-100

Figure 7. CUDA CIFAR-100 and ImageNet-100 images generated using k = 3, pb = 0.3 and k = 9, pb = 0.06, respectively. The top
row shows the clean images, the bottom row shows the corresponding CUDA image, and the middle row shows the normalized difference
between the clean and the CUDA image.

Figure 8. ResNet-18 trained using CUDA CIFAR-10 data generated using different blur parameters pb.
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Figure 9. ResNet-18 trained using CUDA ImageNet-100 dataset generated using different filter sizes k.

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-100

Figure 10. Adversarial training curves for ResNet-18 with CIFAR-10, CIFAR-100, and ImageNet-100 CUDA datasets.

izations help in improving the vanilla ERM training, these
networks still do not achieve good generalization on the
clean data distribution. We use cutout using GitHub codes6

with length=16 and n holes=1, cutmix using GitHub
codes7 with α = 1, autoaugment using PyTorch [38], mixup
using GitHub codes8 with α = 1, and orthogonal regular-
ization using GitHub codes9 with reg=1e-6 (all MIT li-
censes).

6https://github.com/uoguelph-mlrg/Cutout/blob/
master/util/cutout.py

7https://github.com/hysts/pytorch_cutmix/blob/
master/cutmix.py

8https : / / github . com / facebookresearch / mixup -
cifar10/blob/main/train.py

9https://github.com/kevinzakka/pytorch-goodies

A.14. Network parameter distribution

In this section, we compare the network parameter distri-
butions of ResNet-18 trained on clean and CUDA CIFAR-
10 datasets (see Figure 13). Both the distributions are sim-
ilar to normal distributions with a mean of 0. However,
the parameter distribution of the clean model has a higher
standard deviation than the CUDA-based model’s parame-
ter distribution.
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(a) Test accuracy (b) Training loss

Figure 11. ResNet-18 trained using clean, CUDA, and universally blurred CIFAR-10 datasets.

(a) Test accuracy (b) Training loss

Figure 12. Pre-trained ResNet-18 with fine-tuning and training the linear layer using CUDA and clean CIFAR-10 datasets.
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Figure 13. Network parameter distributions of ResNet-18 trained on clean and CUDA CIFAR-10 datasets.
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