
Supplemental Material for Re-IQA: Unsupervised Learning for Image Quality

Assessment in the Wild

1. Distortion Bank

We used a total of 25 quality distortion augmentations,
with five levels for each type of distortion, for training our
quality-aware sub-module. The visual differences among
the various levels and types of distortions can be seen in
Figure 1, 2, 3, and 4. The details of each distortion type are
expanded below.

• Resize Bicubic: Downsize the image and upsize
it back to the original size using bicubic interpolation.

• Resize Bilinear: Downsize the image and up-
size it back to the original size using bilinear interpo-
lation.

• Resize Lanczos: Downsize the image and upsize
it back to the original size using Lanczos filter-based
interpolation.

• Pixelate: Downsize the image and upsize it back to
the original size using nearest-neighbor interpolation.

• Motion Blur: Emulates motion blur by filtering us-
ing a line kernel.

• Gaussian Blur: Filters the image with a Gaussian
kernel.

• Lens Blur: Filters the image with a circular kernel.

• Mean Shift: Shifts the mean intensity of the im-
age by adding a constant value to all pixel values and
truncating to the original value range.

• Contrast: Changes the contrast of the image by ap-
plying a non-linear Sigmoid-type adjustment curve on
the RGB values.

• Unsharp Masking: Increases the sharpness of an
image by using unsharp masking.

• Jitter: Randomly scatters image data by warping
each pixel with small random offsets.

• Color Block: Inserts homogenous randomly col-
ored blocks at random locations in the image.

• Non-eccentricity: Randomly offsets small
patches in the image by small displacements.

• JPEG Compression: Applies standard JPEG com-
pression.

• White Noise (RGB space): Adds Gaussian
White noise in the RGB space.

• White Noise (YCbCr space): Adds Gaussian
white noise in the YCbCr space.

• Impulse Noise: Adds salt and pepper noise in the
RGB space.

• Multiplicative Noise: Adds speckle noise in
the RGB space.

• Denoise: Adds Gaussian white noise to the RGB
image and then applies a randomly chosen blur filter
(Gaussian or box blur) to remove noise.

• Brighten: Increases the brightness of the image by
applying a non-linear curve fitting to avoid changing
extreme values.

• Darken: Similar to Brighten, but decreases pixel
values.

• Color Diffuse: Applies Gaussian blur on the
color channels (a and b) in the LAB-color space.

• Color Shift: Randomly translates the green chan-
nel and blends it into the original image masked by a
gray level map which is the normalized gradient mag-
nitude of the original image.

• Color Saturate: Multiplies the saturation chan-
nel in the HSV-color space by a factor.

• Saturate: Multiplies the color channels in the
LAB-color space by a factor.
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Figure 1. Distortion Bank. Best viewed zoomed.
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Figure 2. Distortion Bank - Continued. Best viewed zoomed.
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Figure 3. Distortion Bank - Continued. Best viewed zoomed.
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Figure 4. Distortion Bank - Continued. Best viewed zoomed.

2. Additional Experiments

In this section, we report results from additional experi-
ments performed using our proposed Re-IQA framework.
Section 2.1 illustrates the robust performance of our Re-
IQA model when trained and tested on different databases.
In Section 2.2, we extend the Re-IQA framework to the Full
Reference IQA setting and report performance results for
databases with synthetic distortions.

2.1. Cross-Database Performance

We conducted cross-dataset evaluations to demonstrate
the robustness of the representation learned in our Re-IQA
framework, where training and testing were performed on
different datasets. We follow the cross-database evalua-
tion protocol, used by authors of CONTRIQUE. We select
four image quality databases CLIVE, KonIQ, LIVE-IQA
and CSIQ-IQA, covering both synthetic and authentic dis-
tortions and three state-of-the-art NR-IQA algorithms PQR,
HyperIQA, and CONTRIQUE, apart from our proposed Re-
IQA. We use Spearman’s rank order correlation coefficient

Training Database Testing Database NR-IQA Algorithms
PQR Hyper-IQA CONTRIQUE Re-IQA

CLIVE KonIQ 0.757 0.772 0.676 0.769

KonIQ CLIVE 0.770 0.785 0.731 0.791

LIVE-IQA CSIQ-IQA 0.719 0.744 0.823 0.808

CSIQ-IQA LIVE-IQA 0.922 0.926 0.925 0.929

Table 1. Cross Database SRCC Comparison of NR-IQA models.
Top 2 Performing Models in each row is in bold. Higher SRCC
indicates better performance.

(SRCC) to evaluate the cross-database performance of all
the four models. Results from Table 1 indicate that Re-
IQA attains comparable performance to the NR-IQA mod-
els across both synthetic and authentic distortions.

2.2. Full Reference Image Quality Assessment

Re-IQA learns image representations in a completely un-
supervised setting, thus making it flexible for application in
Full Reference Image Quality Assessment (FR-IQA) tasks.
Since reference image scores are available in the case of
FR-IQA tasks, the score regressor is now trained to predict



Method
Synthetic Distortions

LIVE-IQA CSIQ-IQA TID-2013 KADID
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

PSNR 0.881 0.868 0.820 0.824 0.643 0.675 0.677 0.680
SSIM 0.921 0.911 0.854 0.835 0.642 0.698 0.641 0.633
FSIM 0.964 0.954 0.934 0.919 0.852 0.875 0.854 0.850
LPIPS 0.932 0.936 0.884 0.906 0.673 0.756 0.721 0.713

DRF-IQA 0.983 0.983 0.964 0.960 0.944 0.942 - -
CONTRIQUE-FR 0.966 0.966 0.956 0.964 0.909 0.915 0.946 0.947

Re-IQA-FR (content-aware) 0.932 0.947 0.927 0.928 0.877 0.884 0.889 0.898
Re-IQA-FR (quality-aware) 0.973 0.974 0.961 0.965 0.905 0.915 0.901 0.903

Re-IQA-FR 0.969 0.974 0.961 0.962 0.920 0.921 0.933 0.936

Table 2. Performance comparison of Re-IQA-FR against various FR-IQA models on IQA databases with synthetic distortions. The top 2
best performing models are in bold. Higher SRCC and PLCC scores imply better performance.

the difference in the scores of the reference image and the
distorted image, as described in equation 1 below

ydmos = W |href � hdist| (1)

where ydmos is the differential mean opinion score of the
test image, W represents the regressor weights, and href

and hdist are the image representations generated by the
Re-IQA sub-modules for the reference and distorted images
respectively. We refer to this modified framework as Re-
IQA-FR. Note that only the score regressor is modified and
trained for FR-IQA, and the weights of the pre-trained sub-
modules of Re-IQA remain unchanged.

The evaluation strategy for FR-IQA remains exactly the
same as that of NR-IQA, wherein we split the dataset into
70-10-20 for train-val-test sets and report the median per-
formance scores. We report the performance of Re-IQA-
FR on various full reference IQA datasets (refer Table 2),
otherwise referred to as synthetic IQA datasets throughout
our paper. We compare our model against six popular FR-
IQA models available in the literature: PSNR, SSIM, FSIM,
LPIPS, DRF-IQA [1] and CONTRIQUE-FR, where the first
three are traditional models and the last three are deep learn-
ing based models. We also report the scores of the individ-
ual sub-modules of Re-IQA-FR.

Results from Table 2 highlight that our proposed Re-
IQA-FR model achieves state-of-art performance across all
evaluated databases. Another interesting observation is that
the SRCC and PLCC scores of the Re-IQA-FR are bet-
ter than the No-Reference version of Re-IQA across all
databases, as reported in Table 2 of the main paper. This
can be attributed to the knowledge of extra information
available to the Re-IQA-FR framework in the form of the
undistorted reference image. We also provide a cross-
database comparison between CONTRIQUE-FR and Re-
IQA-FR in Table 3. The results suggest that RE-IQA-FR
and CONTRIQUE-FR exhibit similar performance, with
RE-IQA-FR performing slightly better.

Table 3. Cross Database SRCC Comparison of CONTRIQUE and
Re-IQA-FR

Training Dataset Testing Dataset CONTRIQUE-FR Re-IQA-FR
LIVE-IQA CSIQ-IQA 0.855 0.856
CSIQ-IQA LIVE-IQA 0.937 0.942

Figure 5. t-SNE visualization of learned quality-aware representa-
tions for 1338 ‘Images in the Wild’ from KonIQ.

3. Visualization

We utilized the TSNE() function from the
sklearn.manifold library to conduct t-SNE experiments and
present the findings in Figure 5 (Main Paper). The func-
tion’s default parameters were used, except for perplexity
and n iter. While we selected perplexity = 50 and
n iter = 3000 to achieve optimal visual outcomes, our
results remain reliable even when perplexity = 10 and
n iter = 1000 were used.
In Figure 5, we demonstrate the efficacy of the repre-
sentations generated by the quality-aware sub-module of
Re-IQA in segregating high-quality images from low-
quality images. We use 2D t-SNE plots to visualize the
high-dimensional learned feature embeddings. The orange



points represent lower-quality images (scored less than
50 on a scale of 0-100), while the blue points represent
higher-quality images (scored more than 50 on a scale of
0-100). We chose 1338 images from the KonIQ dataset,
such that there is an equal representation of low and
high-quality images available for the visualization. As can
be seen in the figure, the orange points cluster toward one
corner, whereas the blue points cluster toward the opposite
corner. The overlapping region of the clusters represents
those images for which the quality-aware model’s learned
representations are likely to produce quality scores that do
not agree with the ground truth.

4. Discussion on Hypotheses

Our unsupervised learning framework to learn quality-
aware features requires us to define a decision boundary
between ‘similar-quality’ and ‘different-quality’ labels.
As discussed in Section 3.2 (Main Paper), we set up
our learning framework by assuming the following three
hypotheses to be true:

Hyothesis 1: Image quality can vary in different lo-
cations based on the image’s content. Thus, PQAF varies
within an image itself. If we assign PQAF to an image
patch x and denote it as PQAFx, then PQAFx varies only
a small amount between neighboring patches. However,
PQAFx may vary significantly between two distant
patches depending on the content. Our approach generates
‘similar-quality’ samples by extracting overlapping patches
from an image in the training database. We conducted an
ablation study to assess the impact of varying the degree of
overlap between the two patches sampled from an image
on the performance of the Re-IQA model. Detailed results
of this study can be found in Table 1 of the Main Paper. We
do not explicitly sample from distant patches in an image.

Hypothesis 2: This hypothesis serves as a primary
basis in the design of the Re-IQA-QA module. The PQAF
of any two randomly selected images are ‘different,’ which
assumes that the scenes depicted in the images differ.
However, this does not enforce any restrictions on the
quality scores of the two images. Without this hypothesis,
the contrastive loss cannot be computed between features
obtained from crops of 2 different source images, and
the network will not learn to compare two images from
different sources during training.

Hypothesis 3: Two different distorted versions of the
same image have different PQAF. This hypothesis is
like an axiom. Its absence results in 2 images with the
same content but different distortions generating the same
PQAF, which would be technically wrong because it would
imply two images with different distortions have the same

perceptual quality. This is important because it ensures that
the PQAF accurately reflects the perceptual quality of an
image, even when comparing images with the same content
but different distortions.
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