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1. Overview of Camera Noise Model
In this section, we present an overview of different cam-

era noise sources followed by a justification of the Pois-
son noise model used for photon-limited settings. Con-
sider the sensor output of ith pixel of camera, denoted as Yi.
From [10], we model Yi as the following random variable:

Yi ∼ Kd

(
Ka(P(Ii) + ηa) + ηd + ηq

)
(1)

Here Ii represents the average number of incident photons
during the exposure. Ka, Kd represent the analog and digi-
tal gain respectively. ηa represents noise sources before the
analog gain (dark current shot noise, flicker noise etc.) and
ηd represents noise sources before the digital gain (thermal
noise, fixed pattern noise). ηq represent the quantization
noise. From Eq. (1), we can see view Yi is a noisy mea-
surement of the parameter Ii.

Eq. (1) can be simplified in the following way:

Ỹi ∼ P(Ii)︸ ︷︷ ︸
signal-dependent

+ ηa +
1

Ka
(ηd + ηq)︸ ︷︷ ︸

signal-independent

(2)

where Ỹi
def
= Yi/(KaKd) is the normalized the pixel mea-

surement. The noise sources can be easily decoupled
into signal dependent Poisson noise and signal indepen-
dent noise sources. The latter is often approximated as zero
mean Gaussian noise in literature [2,3,6] leading to the fol-
lowing Poisson-Gaussian mixture modelling

Ỹi ∼ P(Ii) + Zi Zi ∼ N (0, σ2) (3)

We can further break down average number of incident pho-
ton Ii as Ii

def
= αxi where α is a function of camera parame-

ters such as exposure time, quantum efficiency, sensor area
etc. and xi is the scene radiance corresponding to the ith

pixel. This helps us decouple the scene and camera charac-
teristics in the signal Ii. Therefore, we arrive at the follow-
ing camera model formulation where Yi is the measurement
of the true signal xi:

Ỹi ∼ P(αxi) +N (0, σ2) (4)

1.1. Poisson Noise SNR

For this subsection, we ignore the Gaussian term in Eq.
(4) i.e. σ = 0 to focus on the nature of Poisson noise. An
interesting property of the Poisson random variable is that
its mean and variance are the same. Thus, the signal-to-
noise ratio for Ỹi, in absence of Gaussian noise, is given as
follows:

SNR(Ỹi)
def
=

E[Ỹi]√
Var[Ỹi]

=
√
αxi (5)

This implies that our measurements get noisier with de-
creasing number of incident photons. If the scene is not
well-illuminated (low xi) or the exposure is short (small α),
the number of incident photons on the sensor is also low
leading to noisier images.

1.2. Photon-Limited Scenes

Scenes where the Poisson noise dominates other sources
of noise in the measurements are defined as photon-limited
[4]. For the random variable Ỹi defined in (4), this occurs
when the variance due to Poisson noise is greater than the
variance due to Gaussian noise, i.e. αxi ≥ σ2.

However, for the purpose of this paper, not all photon-
limited scenes are equally significant. To emphasize this
point, we inspect the SNR for Poisson-Gaussian mixture Ỹi

for different levels of α. The SNR for Ỹi in presence of both
Poisson and Gaussian noise is given as follows:

SNR[Ỹi]
def
=

E[Ỹi]√
Var[Ỹi]

=
αxi√

αxi + σ2
(6)

Consider the case of read noise σ = 1.6e- [7]. We as-
sume xi = 1 and inspect the random variable Yi for differ-
ent α in the photon-limited regime, as shown in Table 1.

From the table we can conclude the following: Images
taken in well-illuminated scenes with good exposure can
be approximated as noiseless for the purpose of deblur-
ring. However, on the other end of photon-limited regime
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Photon level ↓ SNR (in dB)
α = 1000 29.98 dB
α = 40 15.75 dB
α = 20 12.48 dB
α = σ2 1.07 dB

Table 1. Signal-to-noise ratio (SNR) for different photon levels in
photon-limited regime.

i.e. α = σ2, there is too much noise in the image for
any meaningful recovery from a single frame. Therefore,
for this paper, we explore photon-limited deconvolution for
α ∈ [10, 40] where shot noise dominates read noise but
there is still a possibility of extracting the clean image.

2. Initialization Algorithm
In Algorithm 1, we describe the kernel initialization

method for the proposed method. This scheme is a minor
variation of the kernel estimation method from [1] and used
to estimate a rectilinear kernel with parameters {ρ, θ} from
the blur-only image G(y). We would like to reiterate to
the reader that the scheme in Algorithm 1 is not the kernel
estimation process in its entirety and only represents the ini-
tialization process. The kernel estimated at the end of this
algorithm is further refined in Stage I and II of the main
iterative scheme.

Algorithm 1 Initialization for Kernel Estimation
1: Input: Blur-only Image G(y), Number of Key Points

K
2: Estimate gradient images Dx,Dy from G(y)
3: for θ = 1, 2, · · ·, 180 do
4: Dθ ← Dx cos(θ)−Dx sin(θ)
5: fθ ← max(|Dθ|)
6: end for
7: fθ̂, θ̂ ← min fθ

8: ρ← C1

√
C2

0

f2
θ̂

− σ2
b

9: (x0, y0)← (0, 0)
10: for k = 1, 2, · · ·,K − 1 do
11: (xk, yk)← kρ

K−1 cos(θ̂),
kρ

K−1 sin(θ̂)
12: end for
13: z0 ← [x0, y0, x1, y1, ..., xK−1, yK−1]

T

14: return z0

3. Qualitative Comparison
Extended qualitative results comparing end-to-end

trained methods to our approach are provided in the sup-
plementary document. Figure 1 and 2 provide qualitative
examples from the RealBlur dataset which contains realistic

blur. Figure 3 contains examples from the PLDD dataset [9]
cotnains real-shot noise corrupted and blurred image sensor
data along with the ground-truth kernel, as measured using
a point source. Finally, Figure 4 provides reconstruction re-
sults on synthetically blurred images using motion kernels
from Levin dataset [5].

4. KTN Architecture and Training
The KTN architecture can be summarized as follows:

the vectorized control points of dimension 2 × (K − 1)
are passed through 3 fully-connected layers followed by re-
shaping into an image. The reshaped image is then passed
through the decoding half of a UNet to give the kernel out-
put. The final output, when used in the iterative scheme, is
clipped to zero and then normalized to one. Architecture
details of KTN are provide in Figure 5.

5. Implementation Details
Boundary Conditions: While blurring the image syn-

thetically, the boundary conditions are important to take
into account. Circular boundary conditions allow the blur
operator to be written in terms of FFTs and making it com-
putationally inexpensive, it is not a realistic assumption for
natural blur. A more appropriate boundary condition to as-
sume is symmetric boundary condition.

This has major implications for our inverse problem
scheme. Since PhD-Net assumes circular boundary condi-
tions, we need to pad the image symmetrically, pass through
PhD-Net and crop out the relevant portion to deblur the im-
age without any artifacts. Second, when calculating the re-
blurring loss, hz ⊛ F (y,hz) needs to be calculated using
symmetric boundary conditions.

Step Size and Backtracking: For Stage I, we set the ini-
tial step size as δ = 105 and for Stage II, we set δ = 2.0.
For every iteration, we check whether the current choice of
step-size decreases the cost-function or not. If it doesn’t,
then the step-size is reduced by half for rest of the itera-
tive scheme until the next time the cost function increases
instead of decreasing. Note that δ is set very large in the
first stage compared to the second. This is because the gra-
dients are backpropagated through two networks i.e., F (.)
and T (.) instead of one, leading to the vanishing gradient
problem and hence justifying the larger step size.

Computational Time: For each stage of the iterative
scheme, we limit the number of iterations to 150. The ex-
periments in the main document are performed on a Nvidia
TitanX GPU, and take approximately 0.35 seconds per iter-
ation.
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Figure 1. Qualitative examples on the Real-Blur Dataset
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Figure 2. More Qualitative examples on the Real-Blur Dataset
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Figure 3. More comparisons on Photon-Limited Deblurring Dataset [8].



Input

SRN MIMO-UNet++ MPR-Net

Ours Non-Blind Ground-Truth

Input

SRN MIMO-UNet++ MPR-Net

Ours Non-Blind Ground-Truth

Figure 4. Qualitative Examples on Synthetic Blur: ”Non-Blind” is provided for reference and serves as an upper bound on the decon-
volution performance. It is obtained through PhD-Net with noisy-blurred image and ground truth kernel as inputs. The kernels in inset of
”Ours” and ”Non-Blind” represent the estimated and true blur kernel respectively.
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Figure 5. Kernel Trajectory Network Architecture 3 fully connected layers followed by a U-Net decoder


	. Overview of Camera Noise Model
	. Poisson Noise SNR
	. Photon-Limited Scenes

	. Initialization Algorithm
	. Qualitative Comparison
	. KTN Architecture and Training
	. Implementation Details

