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1. Document Overview
This document supplements the main paper with addi-

tional details about implementation, and further insights
into WIRE and its effect on signal representation accuracy,
effect of initialization, visualization of layer outputs, and
performance for various inverse problems.

2. Experiments
2.1. Choice of wavelet function

We showed that a complex Gabor wavelet activa-
tion function of the form ejω0xe−|s0x|2 enabled high
capacity and robust representation for visual signals.
Here, we show that other continuous wavelets can also
be used to equip implicit neural representations (INRs)
with performance comparable to that of complex Gabor
wavelet. We compared complex Gabor wavelet, real Ga-
bor wavelet (cos(ω0x)e

−(s0x)
2

), mexican hat wavelet ((1−
(s0x)

2)e−(s0x)
2

), and difference of Gaussian (e−(s0x)
2 −

e−(s1x)
2

). Figure 1 shows two examples on image repre-
sentation. In first example (a), we show representation ac-
curacy for a noise-free settings. In (b), we show representa-
tion accuracy for a noisy image, and (c) shows visualization
of final output for noisy image representation. Across the
board, we see that the complex Gabor wavelet has superior
performance, both in terms of speed of representation, as
well as robustness, which motivated our choice of wavelet
in the main paper.

2.2. WIRE initialization

INRs like SIREN [5] strongly depend on initialization to
obtain accurate representation. WIRE does not require any
initialization except for the default uniform weights. How-
ever, since WIRE consists of a complex sinusoidal term, it
marginally benefits from SIREN-like initialization. To un-
derstand the dependence, we evaluated approximation ac-
curacy for image representation (no noise), and image de-
noising (20dB image noise). Here, a SIREN-like weight
initialization implies the first layer weights are drawn from

U(−1/N, 1/N) and the weights of the rest of the layers are
drawn from U(−

√
6/(ω0N),

√
6/(ω0N)), where N is the

number of input features and U(a, b) is a uniform distri-
bution over [a, b]. A normal weight initialization involves
drawing weights from U(−1/

√
N, 1/

√
N) for all layers.

Fig. 2 compares the representation accuracy for SIREN-like
and standard initialization. In both cases, we see that the
trends are nearly similar; SIREN-like initialization results
in up to 1dB higher accuracy. Hence WIRE is largely ro-
bust to initial parameters which enables easy tuning across
a large range of hyperparameters ω0, s0.

2.3. WIRE layer visualizations

Gabor wavelets uniquely enable space–frequency local-
ization, a property we observe is inherited by WIRE. To
evaluate this hypothesis, we visualized the output WIRE
composed of an MLP with two hidden layers and 181 hid-
den features each. We then learned a representation for a
Siemens star test image that consists of all spatial frequen-
cies and orientations. Fig. 3 visualizes the input image real
and imaginary outputs of 64 hidden features with least vari-
ance. The output of each first layer feature consists of one-
dimensional Gabor wavelets at various orientations, while
the outputs of second layer consist of sparsely populated
images.

Fig. 4 visualizes outputs at each layer for various nonlin-
earities and the final approximated image for the Siemens
star test image. The sparse outputs of second layer are ev-
idently unique to WIRE. Gauss has outputs that look less
spares, while SIREN and ReLU with positional encoding
result in dense outputs. This has a direct consequence on
approximation capacity for high frequency parts of the sig-
nal. The final result in the bottom row shows that the sparse
nature of outputs of WIRE enables high approximation ac-
curacy with qualitatively better features at the center of the
image which consists of highest spatial frequenices. Gauss
follows next as it results in the second most sparse outputs
at each layer. SIREN and ReLU with positional encoding
alike produce blurry outputs at the center, primarily due to
the non-compact nature of outputs. WIRE’s ability to de-
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(a) Image representation (b) Image denoising
Noisy (19.8dB) Mexican hatGround truth
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(c) Denoising visualization

Figure 1. Effect of wavelet. WIRE can be equipped with vari-
ous forms of nonlinearities including a complex gabor wavelet (as
shown in the main paper), real gabof wavelet, mexican hat, and
difference of Gaussians. The figure above shows (a) accuracy vs.
time for image representation, (b) accuracy vs. time for image de-
noising, and (c) visualization of denoised results. While the results
are comparable, complex Gabor results in highest accuracy.

compose images as a linear combination of sparse images
results in high representational capacity for the same num-
ber of parameters, as we verify empirically in the next sec-
tion.

2.4. Sensitivity to training parameters

WIRE is a promising INR model that achieves high rep-
resentation accuracy and is robust to a wide range of train-
ing parameters. We demonstrate the efficacy of WIRE in
this section with several sensitivity analyses.

                

     

  

  

  

  

  

  

  

 
 
 
 
  
 
 
 

                         

                     

                

     

 

  

  

  

  

 
 
 
 
  
 
 
 

                         

                     

Image representation Image denoising

Figure 2. Effect of initialization. The plots show approximation
accuracy for image representation and image denoising (20dB in-
put PSNR) across training epochs with SIREN-like weight initial-
ization and standard initialization. WIRE is robust to the initial
weights, but marginally benefits from a SIREN-like initialization.
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Figure 3. Layer outputs for WIRE. The input image is a Siemens
star test image that contains all spatial frequencies and all angles.
The patches show outputs (same size as image) of each hidden
feature in layer one and two for a two hidden-layer MLP equipped
with WIRE nonlinearity. WIRE results in sparse images which en-
ables high representational capacity for images, as shown in Fig. 4.

Effect of learning rate. WIRE performs well for a large
range of learning rates. To understand the performance
trends, we learned an image representation with added
noise (20dB input PNSR) with various nonlinearities. We
used a 2-layer MLP with 256 hidden features per layer.
Fig. 5 shows the maximum representation PSNR with vary-
ing learning rates. WIRE has a stable and significantly
higher accuracy compared to other approaches. Interest-
ingly, the highest accuracy is achieved at a high learning
rate of 2 × 10−2. This behavior is also observed with deep
image prior [7] where a larger learning rate enabled stronger
regularization. Such a similar behavior implies WIRE en-
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Figure 4. Visualization of hidden layer outputs. The figure above visualizes outputs of hidden features in the two layers for the Siemens
sector test image shown in Fig. 3. WIRE uniquely results in sparse images, which enables high accurate representation of high frequency
parts of the image (center of the sector).

joys strong inductive biases and hence is amenable to solve
inverse problems.

Effect of number of layers. Fig. 6a shows a plot of rep-
resentation accuracy of an image for varying number of
hidden layers with various nonlinearities. In each case,
the number of hidden features were set to 256. We re-
duced the learning rate with increasing layers to avoid diver-
gence. WIRE uniformly outperforms other approaches (ex-
cept with 0 hidden features), as is to be expected as Gabor
wavelets enable high approximation accuracies for images.
Interestingly, for a large number of hidden layers (≥ 3),
WIRE performance is similar to SIREN and Gaussian non-
linearity. This is to be expected as the network has a large
capacity with so many layers. However, a large number
of layers is computationally expensive and often results in

an unstable learning regime. WIRE therefore is a reliable
choice for small to medium number of hidden layers for
most cases.

Effect of number of features. Fig. 6b shows approxima-
tion accuracy for image representation with varying number
of hidden features. In all cases, the number of hidden layers
were fixed to be two. The performance of WIRE is similar
to other nonlinearities at very low number of hidden fea-
tures, where all models similarly lack sufficient richness.
For higher than 128 features, WIRE outperforms other ap-
proaches with MFN [4] coming a close second.

Limitations of WIRE. For signals that have non-compact
structure, such as periodic signals, or chirp-like images,
WIRE performs poorer than approaches such as SIREN.



            

             

  

  

  

  

  

  

  

 
 
 
  
 
 
 
 
  
 
 
 

    

                

     

        

   

Figure 5. Effect of learning rate. The plot above shows approx-
imation accuracy for representing a noisy image (input PSNR of
20dB) with various nonlinearities. WIRE is robust to learning rate,
and produces best results with high learning rate of 2× 10−2.

        

                         

  

  

  

  

  

 
 
 
  
 
 
 
 
  
 
 
 

    

                

     

        

   

(a) PSNR vs. number of features

     

                       

  

  

  

  

  

  

  

 
 
 
  
 
 
 
 
  
 
 
 

    

                

     

        

   

(b) PSNR vs. number of layers

Figure 6. Effect of number of parameters. The plot above shows
approximation accuracy for representing an image with varying
number of (a) hidden features and (b) hidden layers. WIRE outper-
forms other nonlinearities with 128 or more hidden features, and
one or more layers and is nearly the same as SIREN and Gaussian
nonlinearities for more than 3 layers.

Figure 7 visualizes an example of representing a 2D chirp
with SIREN And WIRE. Evidently, SIREN results in 6dB
higher accuracy compared to WIRE. Such structures are
rare in natural images, but benefit better from nonlinearites
that are non-compact such as SIREN.

2.5. Inverse problems

Computed tomographic reconstruction. We showed in
the main paper that computed tomography (CT) benefits
from inductive biases of INRs. Here, we study the effect
of number of measurements. Fig. 8a shows the ground truth
image we used in our experiments. We denoised the orig-
inal 512 × 512 image [2] with BM3D [3] (σ = 0.1) to re-

(a) Ground truth (b) SIREN (47.4dB) (c) WIRE (41.4dB)

Figure 7. WIRE limitations. For signals with non-compact struc-
ture such as the 2D ramp shown above, SIREN performs better
than WIRE, which is expected as the sinusoidal nonlinearity is
non-compact.

(a) Ground truth image

                 

                     

  

  

  

  

  

  

  

  

 
 
 
 
  
 
 
 

    

                

     

     

   

(b) PSNR vs. number of prjections

Figure 8. CT with varying number of projections. (a) shows the
512 × 512 ground truth x-ray image of lungs [2] we used for our
CT experiments. We denoised the original image to remove streak
artifacts. (b) shows accuracy as a function of number of measure-
ments with various nonlinearities. Across the board, WIRE out-
performs all other approaches by a considerable margin.

move streak artifacts. We then simulated CT reconstruction
with varying numbers of projections. In each case, we used
an MLP with three hidden layers and 256 hidden features
per layer. We sampled the INR on a regular grid to first
generate the image, and then use Radon transform to obtain
the sinogram. From the accuracy plot in Fig. 8b, we see
that WIRE achieves higher PSNR than any other nonlinear-
ity. Fig. 9 visualizes the reconstruction with varying num-
ber of projections for each nonlinearity. The reconstruction
is visually superior even with small number of projections,
which is particularly beneficial for reducing exposure to x-
rays during capture.

Multi-image super-resolution. We showed a result on
multi-image super-resolution in the main paper. Here, we
provide more details about the experiment. Figure 10 shows
the 512×768 dimensional ground truth image from the Ko-
dak dataset [1]. We simulated a total of four low-resolution
images by modifying each 4× downsampled image by a
small translation and rotation, thereby resulting in sub-pixel
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Figure 9. Effect of number of projections on CT accuracy. The images above visualize reconstruction for the lungs image shown in
Fig. 8a. WIRE outperforms all other approaches even with 50 projections (10% measurements) and is visually pleasing.

motion between the frames. We assumed the transforma-
tion Ak between the high-resolution frame x and each low-
resolution frame yk was known. We represented the high
resolution x as output of an INR. In each case, the INR
had three hidden layers with 256 hidden features. We then
solved a linear inverse problem to estimate the high reso-
lution image. Figure 10 shows the reconstructed output for
each nonlinearity and their metrics. The inset shows re-
construction of spokes in the motorcycle. Visually, WIRE
generates the sharpest features without any ringing artifacts.
Moreover, WIRE results in 1dB or better reconstruction ac-
curacy, and 0.04 higher SSIM.

2.6. Neural radiance fields

Implementation details. For experiments both in main
paper and the supplementary, we used the torch-ngp

package [6] that implements a wide variety of approaches
for training neural radiance fields. The architecture consists
of two networks that predict transmittance (sigma) and the
color at each voxel respectively. Each of the two networks
consisted of an MLP with four hidden layers and 182 hidden
features each. The color MLP took position (x,y,z) and di-
rection (θ, ϕ) as inputs, while the transmittance MLP took
only the position as input. As with all other experiments,
we used 182/

√
2 = 128 hidden features for WIRE to ac-

count for parameter doubling due to complex weights. We
downsampled the images by 4× to ensure that the model
and training data fit in the graphical processing unit’s (GPU)
memory. In the main paper, we used a total of 25 randomly
chosen images to train the NeRF, and then validated it on
100 images. We used a learning rate of 4× 10−4 for WIRE
and 2.5 × 10−4 for all other nonlinearities and reduced it



Ground truth One out of four the images Bilinear interpolation MFN
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Figure 10. Multi-image super-resolution. The figure above visualizes multi-frame super-resolution where each sub-frame was simulated
with a small known sub-pixel shift. WIRE achieves highest reconstruction accuracy with qualitatively better reconstruction.

               

     

  

  

  

  

  

  

  

 
 
 
 
  
 
 
 

    

                

     

     

(a) Accuracy vs. epochs for 100
images.

         

                         

  

  

  

  

  

  

 
 
 
 
  
 
 
 

    

                

     

     

(b) Accuracy vs. number of images.

Figure 11. NeRF accuracy on drums dataset. (a) shows train-
ing accuracy at each epoch for various nonlinearities with neural
radiance fields when trained with 100 images. WIRE achieves
0.4dB higher than the next highest (SIREN) when trained with
100 images and does so in a rapid manner. (b) shows accuracy as
a function of number of images with WIRE outperforming other
approaches for all number of images.

to 0.1× initial value over a total of 2500 training epochs.
Except for ReLU, we did not use any form of positional
encoding with other nonlinearities as we wished to demon-
strate the capacity of each nonlinearity by itself.

Effect of number of images. Fig. 11a shows accuracy vs.
number of epochs for the drums dataset when trained with
all 100 images. WIRE results in highest accuracy within
2500 epochs and converges more rapidly than other ap-
proaches. Fig. 11b shows accuracy as a function of num-
ber of training images. WIRE achieves 0.1dB higher than
the next competitor SIREN for 25, 50, and 75 images, and

0.4dB higher when trained with 100 images.
Fig. 12 visualizes one of the reconstructed views for the

drums. We varied the number of images from 25 to 100 and
then rendered the image from a novel view. Visually, WIRE
generated the most pleasing results including sharp features
of the cymbals and their stands, and the smooth membrane
on the drum. In contrast, Gaussian nonlinearity results in
cloudy artifacts, while SIREN has high frequency artifacts,
especially at lower numbers of images. ReLU+positional
encoding requires all 100 images and considerably more
than 2500 epochs to reconstruct the components. In all,
WIRE is a a robust solution for training radiance fields, even
with a small number of training samples.
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Figure 12. Effect of number of images on NeRF accuracy. The figure above visualizes rendered images with a neural radiance field for
various nonlinearities (across columns) and varying number of images (across rows). WIRE achieves visually better reconstruction than
all other methods for all numbers of images, thanks to its strong inductive biases that enable learning the high frequency features of the
scene’s radiance field.
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