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Appendix
A. Additional results

Which map elements are most important? We study in
Fig. 1 the impact of each type of map element on the final
accuracy by dropping them from the input map. The classes
with the largest impact are buildings and road, which are
also the most common in areas covered by the training data.

Impact of the field-of-view: We study the impact of the
FoV on the accuracy by cropping the images in the horizontal
direction to varying degrees. Figure 2 shows the results on
the MGL validation set. Reducing the FoV decreases the
accuracy proportionally — a 50% smaller FoV results in half
of the original accuracy.

Qualitative results: We show additional examples of single-
image predictions in Fig. 3 and failure cases in Fig. 4.

B. Data processing and distribution

B.1. OpenStreetMap

Map classes: OpenStreetMap [2] exposes for each element a
set of tags with standardized categories and labels according
to a very rich hierarchy. We group elements into a smaller set
of classes that we list in Tab. I, resulting in 7 types of areas,
10 types of lines, and 33 types of points (nodes). Figure 7
shows the distribution of such elements for a small area.
Figure 8 shows how some OSM tags are mapped to some
semantic classes.

Coordinate system: The coordinates of the map elements
are given in WGS84 coordinates (longitude and latitude). We
convert them to a local scaled Mercator datum centered at
the median camera pose of each area. This yields topocentric
coordinates that are aligned with the East and North axes.

B.2. Mapillary Geo-Localization dataset

Curation process: We browsed the Mapillary platform and
looked for sequences that were sufficiently recent and with
the most accurate ground truth poses. We selected sequences
recorded after 2017 and with cameras known for resulting in
good reconstructions. These include the Xiaomi Yi Action
2K (fisheye) or GoPro Max, MADV QJXJO01FJ, or LG-R105
(spherical) cameras. We selected 12 cities, listed in Tab. 2,
that have a high density of such sequences. Figure 6 shows
maps overlayed with the selected sequences. Images of each
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Figure 1. Good semantics to localize. Removing different elements
from the map reveals how important they are for localization. Build-
ings, roads, footpaths, and cycleways are the most useful semantic
classes, likely because they are also the most frequent ones.
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Figure 2. Impact of the field of view on the localization recall with
the MGL validation set. Decreasing the FoV directly impairs the
accuracy as fewer map elements are visible in a single image.

type classes

parking spot/lot, building, grass,

areas playground, park, forest, water

road, cycleway, pathway, busway,

lines fence, wall, hedge, kerb, building outline, tree row

parking entrance, street lamp, junction, traffic signal,
stop sign, give way sign, bus stop, stop area, crossing,
gate, bollard, gas station, bicycle parking, charging station,
nodes shop, restaurant, bar, vending machine, pharmacy,
tree, stone, ATM, toilets, water fountain, bench,
waste basket, post box, artwork, recycling station,
clock, fire hydrant, pole, street cabinet

Table 1. List of map classes derived from OpenStreeMap data
and included in the map rasters.

location were split into disjoint training and validation sets,
resulting in 826k training and 2k validation views.

Preprocessing: We discard sequences with poor reconstruc-
tion statistics or high overlap with OSM building footprints.
We subsample the sequences such that frames are spaced by
at least 4 meters. We undistorted fisheye images into pinhole
cameras. We resampled each 360 panorama into 4 90°-FOV
perspective views at equally-distributed yaw angles with a
random offset constant per sequence. We query OSM data
for each city and create tiles of our raster representation at a
resolution A=50 cm.
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Figure 3. Additional qualitative results for single-image localization. We again show the ground truth pose (green arrow) and the predicted
pose (black arrow). For Aria data, we also show the noisy GPS measurement as a red dot.
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Figure 4. Failure cases of single-image localization. Localizing a single image often fails when the environment lacks distinctive elements,
when they do not appear in the map, or when such elements are repeated, making the pose ambiguous. Since OSM is crowd-sourced, the
level of detail of the map is not consistent and widely varies. For example, trees are registered in some cities but not in others.



Country City #sequences  # images
USA San Francisco 1013 207.6k
Netherlands ~ Amsterdam 57 72.9k
Germany Berlin 59 54.6k
Lithuania Vilnius 381 111.5k
Finland Helsinki 91 55.4k
Italy Milan 156 46.2k
Paris 136 68.4k
Montrouge 159 33.3k
Fran Le Mans 111 27.4k
ance Nantes 171 62.5k
Avignon 160 75.2k
Toulouse 86 39.6k

Table 2. Distribution of locations from which we built the MGL
dataset. We selected cities that are well covered by both Mapillary
and OpenStreetMap.

B.3. Aria datasets

Recording: We recorded data with Aria devices [1] at 3 lo-
cations in Seattle (Downtown, Pike Place Market, Westlake)
and at 2 locations in Detroit (Greektown, Grand Circus Park).
In each location, we recorded 3 to 5 sequences following the
same trajectories, for a duration of 5 to 25 minutes varying
by location. Each device is equipped with a consumer-grade
GPS sensor, IMUs, grayscale SLAM cameras, and a front-
facing RGB camera, which we undistort to a pinhole model.

Evaluation: We associate GPS signals captured at 1Hz with
undistorted 640x 640 RGB images keyframed at 3 meters.
This resulted in 2153 frames for Seattle and 2725 frames
for Detroit. For each evaluation example, the map tile is
centered around the noisy GPS measurement. Because of
large differences in GPS accuracy due to urban canyons, we
constrain the predictions within 64 m of the measurement
for Seattle and 24 m for Detroit.

Comparison to feature matching: Algorithms based on
3D SfM maps require mapping images, whose quality and
density have a large impact on the localization accuracy.
Differently, OrienterNet can localize in areas not covered by
such images as long as OSM data is available. This makes
any fair comparison difficult.

Geo-alignment: Evaluating the localization within world-
aligned maps requires the geo-alignement between each de-
vice pose and the global reference frame. We first co-register
all trajectories of each location by minimizing visual-inertial
SLAM constraints, which yields consistent poses in a local
reference frame that is gravity-aligned and at metric scale.
We then find the global 3-DoF rigid transformation by fusing
all GPS signals with the predictions of OrienterNet for each
image. To do, we perform iterative truncated least-squares,
annealing the outlier threshold from 5m to 1m.
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Figure 5. Pseudo-ground truth alignment of Aria sequences for
the 3 locations in Seattle. Fusing GPS signals and OrienterNet
predictions across all images of all sequences is more robust than
relying on GPS alone.

We show visualizations of this alignment in Fig. 5. While
GPS signals are too noisy to reliably fit a transformation,
OrienterNet provides complementary and accurate local con-
straints. We visually check that the final alignment error is
lower than 1m, which is sufficient for our evaluation.

C. Implementation details

Orienter-Net: To save GPU memory, we use only K =64
rotation bins at training time but increase it to K =512 at test
time. BEV and map features have N=8 channels. To avoid
overfitting, we found it critical to use replicate padding in
the map-CNN &, and to apply data augmentation to the
raster map by randomly flipping and rotating it. We also use
replicate padding in the BEV-to-map matching operation
to avoid biasing the predictions near the map boundaries.
The scale boundaries o, and omgx are set to 21 and 29,
respectively. For the median focal length f = 256px of the
MGL training set, this corresponds to a depth interval of
[0.5m, 128 m].



Training images are resized to 512x512 pixels. When
evaluating on KITTI and Aria data, images are resized such
that their focal length is f = 256px. We train with a batch
size of 9 over 3 V100 GPUs with 16GB VRAM each. We
select the best model checkpoint with early stopping based
on the validation loss.

Retrieval baseline: The work of Samano et al. [3] infers a
global descriptor for each map patch. This is inefficient when
considering densely sampled areas. We can equivalently pre-
dict a dense feature map F' in one CNN forward pass, which
is similar to the recent work of Xia et al. [5] for satellite
imagery. We then correlate the global image descriptor with
F to obtain the pixelwise log-score M. To predict a rotation,
® . computes 4 feature maps Fy, Fs, Fg, Fy for the 4 N-
S-E-W directions, from which we can linearly interpolate
map features for any number of rotation bins This yields
a 3D Wx H x K pose volume M as for OrienterNet. We
found this approach much more efficient than re-computing
map features for different map orientations.

Refinement baseline: We follow the official implementa-
tion of Shi et al. [4] with multi-level optimization at each
iteration and warm restart. We supervise the longitudinal, lat-
eral, and angular offsets with an L2 loss at each iteration and
scale. The map data and branch are identical to OrienterNet.
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Figure 6. Selected sequences of our MGL dataset across 12 cities. Screenshots taken from the Mapillary platform browser.
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Figure 7. Distribution of OSM elements for the city of Detro
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Figure 8. Mapping between OSM tags and raster classes. We show a subset of the classes and the number of corresponding elements for
the city of Detroit.
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