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In the following, we present additional experiments and
qualitative results about the proposed PAC-S metric.

1. Additional Experimental Results

Correlation with MID score. In addition to the experi-
ments presented in the main paper, we conducted further
comparisons with the MID metric [3]. Since it exploits
CLIP-based features as CLIP-S [2] and our proposal, in
Table 1 we compare the results of the original MID score
with a re-implemented version that uses our embeddings in
place of those of CLIP. In particular, we conduct this analy-
sis on the Flickr8k-Expert, Flickr8k-CF, and FOIL datasets
and show that using our embeddings can further improve the
results of the MID score in the majority of the considered
settings, thus further demonstrating the appropriateness of
our positive-augmented contrastive learning approach.

Reference-based results using ViT-based backbones. As
a complement to Table 8 of the main paper, in Table 2 we
report the referenced-based results using different cross-
modal features. In particular, we experiment with differ-
ent ViT-based backbones of CLIP [4] and OpenCLIP [6]
models. From these results, we confirm the effectiveness
of PAC-S also in the reference-based setting on both image
and video captioning datasets. Both ViT-L/14 models out-
perform the others even in this case, still confirming that
using more powerful features can lead to better results.

Analyzing ResNet-based backbones. In Table 3, we con-
duct the same analysis in both reference-free and reference-
based settings but using visual features extracted from
a ResNet backbone [1]. Specifically, we use the fol-
lowing CLIP-based models: ResNet-50, ResNet-101, and
ResNet-50×4, which employ an EfficientNet-style archi-
tecture scaling. For these experiments, we finetune the last
attention pooling of the visual backbone and the final pro-
jection of the textual branch using the same settings de-
scribed in the main paper. Also in this case, our metric

Flickr8k-Expert Flickr8k-CF Pascal-50S FOIL

Features Kendall τb Kendall τc Kendall τb Kendall τc Accuracy Accuracy

MID [3] CLIP - 54.9 37.3 - 85.2 90.5

MID† CLIP 54.3 54.6 36.5 18.7 84.6 93.2
MID† PAC (ours) 54.7 55.1 36.7 18.8 85.0 93.3

Table 1. Performance of MID with CLIP and PAC ViT-B/32 fea-
tures. The † marker indicates our re-implementation.
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Figure 1. Distribution of PAC scores using different w (Eq. 1 of
the main paper).

achieves the best results in almost all datasets, with the only
exception of VATEX-EVAL in which the EMScore obtains
slightly better correlation scores.

Choice of hyperparameters. The scaling factor, denoted
by w in Eq. 1 of the main paper, is utilized to adjust the
scale of the final metric to improve its numerical readability,
without affecting the ranking of the results. CLIP-S also
employs a comparable technique, where w is assigned the
value of 2.5. To provide additional clarification, we present
in Fig. 1 the impact of varying values of w. The raw PAC-S
scores with w = 1 lie between 0 and 0.5 on all datasets.
Therefore, we decide to use a scaling factor w equal to 2
which stretch the PAC-S scores between 0 and 1.

2. Generated Samples and Qualitatives

Fig. 2 shows additional image-text generated exam-
ples used for the presented positive-augmented contrastive
learning strategy. As it can be seen, both image and text
generated samples are realistic and plausible and can be ef-
fectively used as an additional source of supervision.
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Flickr8k-Expert Flickr8k-CF VATEX-EVAL PASCAL-50S FOIL ActivityNet-FOIL

Kendall τb Kendall τc Kendall τb Kendall τc Kendall τb Spearman ρ Accuracy Accuracy Accuracy

RefCLIP-S [2] 53.6 54.0 36.7 19.0 - - 84.0 94.8 -
EMScoreRef [5] - - - - 37.1 47.5 - - 92.2

56.0 56.4 37.5 19.4 38.8 49.6 84.8 95.1 92.6CLIP ViT-B/16
RefPAC-S

(+2.4) (+2.4) (+0.8) (+0.4) (+1.7) (+2.1) (+0.8) (+0.3) (+0.4)

RefCLIP-S [2] 54.0 54.4 36.5 18.9 - - 85.0 94.9 -
EMScoreRef [5] - - - - 37.0 47.4 - - 93.5

56.7 57.1 37.7 19.5 38.6 49.3 85.0 95.3 94.2CLIP ViT-L/14
RefPAC-S

(+2.7) (+2.7) (+1.2) (+0.6) (+1.6) (+1.9) (+0.0) (+0.4) (+0.7)

RefCLIP-S [2] 53.9 54.3 36.8 19.0 - - 84.7 94.7 -
OpenCLIP EMScoreRef [5] - - - - 38.4 49.1 - - 93.0

ViT-B/32 54.8 55.2 37.4 19.3 38.8 49.5 84.5 94.1 93.6RefPAC-S
(+0.9) (+0.9) (+0.6) (+0.3) (+0.4) (+0.4) (-0.2) (-0.6) (+0.6)

RefCLIP-S [2] 55.7 55.8 37.5 19.4 - - 85.3 95.9 -
OpenCLIP EMScoreRef [5] - - - - 39.4 50.3 - - 94.0

ViT-L/14 56.5 56.9 38.0 19.7 40.3 51.4 84.9 95.8 94.4RefPAC-S
(+0.8) (+1.1) (+0.5) (+0.3) (+0.9) (+1.1) (-0.4) (-0.1) (+0.4)

Table 2. Captioning evaluation results in a reference-based setting on both image and video captioning datasets using different cross-modal
features.

Flickr8k-Expert Flickr8k-CF VATEX-EVAL PASCAL-50S FOIL ActivityNet-FOIL

Kendall τb Kendall τc Kendall τb Kendall τc Kendall τb Spearman ρ Accuracy Accuracy Accuracy

CLIP-S [2] 51.0 51.4 34.0 17.6 - - 80.6 87.9 -
EMScore [5] - - - - 22.0 28.6 - - 87.0

52.6 52.9 34.6 17.9 19.4 25.4 81.7 87.1 87.7CLIP RN50
PAC-S

(+1.6) (+1.5) (+0.6) (+0.3) (-2.6) (-3.2) (+1.1) (-0.8) (+0.7)

RefCLIP-S [2] 52.5 52.8 35.9 18.5 - - 83.4 93.4 -
EMScoreRef [5] - - - - 36.6 46.9 - - 91.8

54.1 54.5 36.4 18.8 36.4 46.7 83.8 93.1 92.7CLIP RN50
RefPAC-S

(+1.6) (+1.7) (+0.5) (+0.3) (-0.2) (-0.2) (+0.4) (-0.3) (+0.9)

CLIP-S [2] 50.5 50.9 33.5 17.3 - - 80.5 89.1 -
EMScore [5] - - - - 21.6 28.2 - - 89.6

53.4 53.7 34.4 17.8 20.4 26.6 81.8 89.0 88.9
CLIP RN101

PAC-S
(+2.9) (+2.8) (+0.9) (+0.5) (-1.2) (-1.6) (+1.3) (-0.1) (-0.7)

RefCLIP-S [2] 52.2 52.6 35.6 18.4 - - 83.3 95.2 -
EMScoreRef [5] - - - - 36.6 46.9 - - 91.7

55.5 55.9 36.6 18.9 37.1 47.5 84.8 95.4 92.1CLIP RN101
RefPAC-S

(+3.3) (+3.3) (+1.0) (+0.5) (+0.5) (+0.6) (+1.5) (+0.2) (+0.4)

CLIP-S [2] 50.7 51.0 34.0 17.6 - - 80.7 89.5 -
EMScore [5] - - - - 22.0 28.8 - - 88.8

53.9 54.3 35.9 18.6 21.9 28.6 82.5 90.5 87.7
CLIP RN50×4

PAC-S
(+3.2) (+3.3) (+1.9) (+1.0) (-0.1) (-0.2) (+1.8) (+1.0) (-1.1)

RefCLIP-S [2] 52.3 52.7 36.1 18.7 - - 83.3 95.3 -
EMScoreRef [5] - - - - 36.7 45.0 - - 91.5

56.2 56.6 37.3 19.3 37.4 47.7 84.8 95.8 91.9CLIP RN50×4
RefPAC-S

(+3.9) (3.9) (+1.2) (+0.6) (+0.7) (+2.7) (+1.5) (+0.5) (+0.4)

Table 3. Additional human correlation and accuracy scores on both image and video captioning datasets using different cross-modal
ResNet-based backbones.

We report in Fig. 3 some additional qualitative com-
parisons between PAC-S and well-known metrics on the
Pascal-50S dataset. These qualitative results show that in
the majority of cases PAC-S is more aligned with the hu-
man judgments than other metrics. Finally, in Fig. 4 and 5,
we report sample results comparing our metric with CLIP-
S [2] on FOIL, Flickr8k-Expert, and Flickr8k-CF datasets.
As it can be observed, PAC-S can correctly identify halluci-
nated objects and better correlates with human judgments,

demonstrating its effectiveness compared to CLIP-S also
from a qualitative point of view.
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Figure 2. Additional real and generated image-text samples used to augment the training set for positive-augmented contrastive learning.
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Figure 3. Additional comparisons of existing metrics for captioning with respect to PAC-S on the Pascal-50S dataset. The candidate caption
highlighted in green is the one preferred by humans.
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Figure 4. Sample images from the FOIL hallucination detection dataset and corresponding evaluation scores generated by our proposed
metric in comparison with CLIP-S. Captions with hallucinated objects are highlighted in red.
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Figure 5. Sample images from both Flickr8k-Expert and Flickr8k-CF datasets associated with the corresponding CLIP-S and PAC-S scores.
The preferred caption accordingly to the human ratings is highlighted in green.
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