
Unsupervised Intrinsic Image Decomposition with LiDAR Intensity
Supplementary Material

Shogo Sato1, Yasuhiro Yao1, Taiga Yoshida1,
Takuhiro Kaneko2, Shingo Ando1, Jun Shimamura1

1NTT Human Informatics Laboratories, 2NTT Communication Science Laboratories
{shogo.sato.wv, taiga.yoshida.ry, jun.shimamura.ec}@hco.ntt.co.jp,

yao-yasuhiro@g.ecc.u-tokyo.ac.jp, ando@info.shonan-it.ac.jp

(a) Shinagawa (b) Yokohama (c) Mitaka

Figure 1. Examples of observed outdoor scenes measured at Shi-
nagawa, Yokohama and Mitaka in Japan.

(a) Albedo (sample21) (b) Albedo (sample.2) (c) Albedo (sample.3)

(d) Shade (sample.1) (e) Shade (sample.2) (f) Shade (sample.3)

Figure 2. Examples of data for albedo and shade domains from an
FSVG dataset [6].

1. Prepared datasets
In this paper, we prepared two types of datasets. One is

a dataset observed with a LiDAR and a RGB camera in real
scenes. The other is a dataset of albedos and shades from
the free supervision from video games (FSVG) dataset [6].

For the observed dataset, outdoor scenes were measured
with a camera and LiDAR at Shinagawa, Yokohama and
Mitaka in Japan. As shown in Fig. 1, the data for these re-
gions have different characteristics. First, Shinagawa was
measured on a wide street, thus showing many roadways
and cars. In Yokohama, measurements were taken on a rel-
atively narrow roadway in a group of buildings. Further-

Figure 3. Examples of sparse annotation (left) and dense annota-
tion (right). The points to be compared are connected by red lines.

more, most of the data in Mitaka were measured on a very
narrow road between houses. By combining data from dif-
ferent measurement points in this way, we were able to in-
crease the variation of the data. Our own dataset is currently
being prepared for release.

For the albedo and shade domain datasets, we used
FSVG datasets. FSVG is a synthetic image dataset of out-
door scenes, for which a set of albedos and rendered im-
ages have been prepared. Since there was no shade image,
shades were generated for dividing the rendered image by
albedo based on Retinex theory [7] in Eq. (1).

I = R · S. (1)

In order to perform inference on the city data, we selected
scenes with buildings as much as possible. Examples of
albedo and shade used for training are shown in Fig. 2.
Since the proposed method in this study is unsupervised
learning, albedo and shade were extracted from 10000 sam-
ples of completely independent data.

2. Annotation
For quantitative evaluation for IID, we annotated the rel-

ative reflectance intensity in the same manner as Bell et
al [1]. First, we extracted 100 samples and 10 samples from
the obtained dataset for sparse and dense annotation, re-
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λ7 WHDR precision recall F-score

0.0 0.455 0.513 0.473 0.430
1.0 0.440 0.543 0.491 0.453
3.0 0.389 0.604 0.545 0.551
5.0 0.353 0.627 0.587 0.596

10.0 0.356 0.630 0.580 0.589
20.0 0.353 0.625 0.596 0.602

Table 1. Ablation study for the weight of intensity consistency
loss λ7 with our dataset for randomly sampled annotation points.

spectively. Each example for annotation is shown in Fig. 3.
We labeled each edge with relative intensity. Although,
points where reflectance could not be defined such as sky or
windows were labeled “NG” and excluded from the evalua-
tion. In addition, points around a strong edge, saturated re-
gions and significant variances were removed, hence, eval-
uation points are concentrated in the low-frequency region.
Thus, the amount of annotations are considered to be biased
(“E” >> “L” or “D”), which is the reason why we evaluated
random sampled data.

3. Ablation study for intensity consistency loss
In original USI3D [10], a weighted sum of the seven

losses is optimized.

min
E,G,f

max
D

(E,G, f,D) = Ladv + λ1Lcnt + λ2LKL

+ λ3Limg + λ4Lpri + λ5Lphy + λ6Lsmooth, (2)

In the original paper, λ1, λ2, λ3, λ4, λ5, and λ6 are set as
10.0, 0.1, 10.0, 0.1, 5.0, and 1.0, respectively. In this pa-
per, we designed an intensity consistency loss that aims to
provide a criterion for the ill-posed problem of decompos-
ing a single image. Thus, we added Lint with weight pa-
rameter λ7 to Eq. (2). To obtain a better result, we searched
weight λ7 as shown in Tab. 1. Although there was no signif-
icant difference in the range of 5 to 20, the highest F-Score
(λ7 = 20) was used in this study.

4. LiDAR intensity densification
A LiDAR intensity densification (LID) module is used

for robustness for LiDAR sparsity or occlusions. In this
section, the effect of the LID module is compared with
that of the conventional methods and the original deep
image prior (DIP) [12]. As a conventional method, a
Navier-Stokes (NS) based algorithm [2] and a fast-marching
method (FMM) based algorithm [11] are implemented. In
Fig. 4, “ground truth” represents the observed-LiDAR in-
tensity, and “input” is LiDAR intensity with 1% density of
the observed data. Since the conventional methods com-

(a) RGB image (b) ground truth (c) input

(d) FMM algorithm [11] (e) NS algorithm [2]

(f) DIP [12] (g) LID module

Figure 4. Comparing the effect of an LID module with that of the
conventional methods [2, 11] and original DIP [12]. Points with
no values are shown in white.

λ8 WHDR precision recall F-score

0.0 0.353 0.625 0.596 0.602
1.0 0.355 0.620 0.593 0.600
5.0 0.367 0.602 0.593 0.596

10.0 0.362 0.608 0.592 0.597
20.0 0.361 0.609 0.599 0.602

Table 2. Ablation study for the weight of hue consistency loss λ8

with our dataset for randomly sampled annotation points.

pleted LiDAR intensity without the RGB image, the gen-
erated image was blurred in sparse regions. On the other
hand, the LID module received the RGB image, hence Li-
DAR intensity is densified while considering image edges
and brightness. These characteristics are noticeable in the
building and white line areas in Fig. 4. Thus, we selected a
LID module for LiDAR intensity densification.

5. Hue consistency loss
In both the conventional methods [1,3–5,8–10] and IID-

LI, the estimated albedo hue may deviate significantly from
the input image, since the irradiation light is sometimes col-
orful, such as the setting sun. When the irradiated light can
be approximated as white light, the estimated albedo and
the input image are considered to have similar hue. Thus, in



methods WHDR precision recall F-score

USI3D 0.326±0.024 0.433±0.007 0.502±0.003 0.425±0.012
Ours (without LID) 0.297±0.015 0.451±0.006 0.522±0.005 0.457±0.008
Ours (without Lint) 0.364±0.065 0.417±0.012 0.466±0.011 0.399±0.024

Ours (without gamma correction) 0.439±0.012 0.442±0.002 0.563±0.003 0.412±0.005
Ours 0.236±0.014 0.507±0.010 0.582±0.009 0.514±0.010

Table 3. The average estimation quality of the five trials in our dataset for all (E=9411, D=2554, L=661) annotation points.

methods WHDR precision recall F-score

USI3D 0.430±0.006 0.511±0.024 0.499±0.002 0.444±0.006
Ours (without LID) 0.420±0.009 0.534±0.009 0.522±0.006 0.524±0.006
Ours (without Lint) 0.471±0.016 0.475±0.030 0.461±0.008 0.416±0.008

Ours (without gamma correction) 0.434±0.006 0.555±0.006 0.563±0.006 0.551±0.006
Ours 0.363±0.008 0.613±0.010 0.584±0.010 0.590±0.010

Table 4. The average estimation quality of the five trials in our dataset for randomly sampled (E=661, D=661, L=661) annotation points.

such a case, inconsistency in hue can be reduced by adding
hue consistency loss in Eq. (3).

Lhue = |H(R(I))−H(I)|, (3)

where H(x) is a function that extract the hue of image x.
In summary, the Lhue is added to Eq. (2) with the weight
parameter λ8.

min
E,G,f

max
D

(E,G, f,D) = Ladv + λ1Lcnt + λ2LKL

+λ3Limg+λ4Lpri+λ5Lphy+λ6Lsmooth+λ7Lint+λ8Lhue,
(4)

To obtain a better result, we searched weight λ8 as shown
in Tab. 2. Since hue is not relevant in the evaluation of this
study, the estimation accuracy was approximately constant.
Fig. 5 shows the qualitative evaluation results. As λ8 was
increased, the hue of the input and the estimation got closer.
In particular, this loss was effective for the sidewalk with
red in Fig. 5. When irradiated light can be approximated as
white, hue consistency loss is considered to be effective for
visual improvement.

6. Variation in estimation quality
In this paper, we evaluated the estimation quality of

conventional methods [1, 3–5, 8–10] and IID-LI with our
dataset. For training USI3D [10] and IID-LI, we performed
five trials per condition due to initial value dependence,
and listed the best performance in the table in the main
manuscript. Since the variation in estimation quality was
not obtained from the listing, the mean values and standard
deviations for each experiment are shown in Tabs. 3 and 4.
As a whole, the variation in the accuracy of IID-LI was not

(a) Input image (b) λ8 = 0.0 (c) λ8 = 1.0

(d) λ8 = 5.0 (e) λ8 = 10.0 (f) λ8 = 20.0

Figure 5. Estimating examples for IID-LI with hue consistency
loss. As λ8 was increased, the hue of the input and the estimation
got closer.

much different from that of USI3D. Tabs. 3 and 4 show that
IID-LI is superior to USI3D in accuracy, even accounting
for errors.

References
[1] Sean Bell, Kavita Bala, and Noah Snavely. Intrinsic images

in the wild. ACM TOG, 33(4):1–12, 2014. 1, 2, 3
[2] Marcelo Bertalmio, Andrea L Bertozzi, and Guillermo

Sapiro. Navier-stokes, fluid dynamics, and image and video
inpainting. In CVPR, volume 1, pages I–I. IEEE, 2001. 2

[3] Sai Bi, Xiaoguang Han, and Yizhou Yu. An l 1 image trans-
form for edge-preserving smoothing and scene-level intrinsic
decomposition. ACM TOG, 34(4):1–12, 2015. 2, 3

[4] Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and
David Wipf. Revisiting deep intrinsic image decompositions.
In CVPR, pages 8944–8952, 2018. 2, 3



[5] Roger Grosse, Micah K Johnson, Edward H Adelson, and
William T Freeman. Ground truth dataset and baseline eval-
uations for intrinsic image algorithms. In ICCV, pages 2335–
2342. IEEE, 2009. 2, 3
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