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We supplement and expand on details from our main
document.

1. Implementation details

1.1. Sampling and extraction

We train our network for a total of 650 epochs. At the
0, 50, 100, 200, 300, 450 epoch marks, we add new points to
the dataset, where we always train on the last three such sets.
The points are sampled from these distributions:

1. We compute the convex hull of the object. We then
scale it up by 5% and sample 16384 points on it uni-
formly by selecting faces with probability proportional
to area and sampling a point inside it using triangle
point picking method.

2. We sample every plane uniformly with 2048 points,
within a bounding box that is aligned to the principal
axes of the contours.

3. For epoch 0, we initially sample n = 2 points uni-
formly on every edge, and off-surface points in dis-
tance ϵ = 2−4. In subsequent epoch marks we add
n = 2, 3, 3, 4, 5 and ϵ = 2−5, 2−5, 2−6, 2−6, 2−7.

The mesh is extracted by dual-contouring on a grid sam-
pled by inference of f(x) (both values and gradients), where
we use grid resolution 3003.

1.2. Architecture

Our base architecture is a 7-hidden layer MLP of layer
width 64. Unlike a typical Neural Field, our MLP is residual,
that is it computes an offset from the input, rather than the

absolute values (as seen in Fig. 2 of the main paper). In-
put coordinates are modulated using sin and cos Positional
Encoding, with 5 learnable frequencies concatenated to the
original input.

Refinement iterations: We run our prediction 10 times
through our network in a recurrent manner, both during
training and test time. Except for the OReXNet output, the
MLP also produces a small hidden code of size 32 that is
passed along the iterations to the network. The first iteration
is fed with a learned constant C.

1.3. Training hyperparameters

For all experiments in the paper, we use the hinge loss
with λ = 10−4 and set the hinge point to be at α = 100. We
trained with initial learning rate lr = 10−2 and reduced it
by a factor of γ = 0.9 every 10 epochs.

1.4. Cross-section placement

The placement and the density of the cross-section planes
is a determining factor for resulting quality—in fact, this
is the entire challenge, as regions that are not sampled can
only be extrapolated, as in Fig 2. To show the robustness
of our method, our experiments show three patterns of se-
lected cross-sections: randomly-oriented slices (Elephant,
Oil lamp), regularly-spaced axis-aligned planes (Balloondog,
Figure eight, Hand ok, Rose), and medically-generated slices
(Skull, Hart, Vertebrate, Abdomen).

2. Additional experiments

We demonstrate the advantages of using neural fields
interpolators, rather than traditional smooth choices (like the
mean-value interpolant by [1]). In Fig 1 and Fig 2 the neural
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field demonstrates self-similarity that correctly interpolates
regions that are not sampled.

Ground Truth (box) Ours [Bermano 2011]Ground Truth (spherical) Ours

Figure 1. Self-similarities and how OReX leverages them. When
the slices sample either a more round shape (left, ’round dog’) or a
cube-like sharp shape (middle ’box dog’), the interpolation of the
nose is consistent with the rest of the style, thanks to the natural
self-similarities of the neural field. Methods that use a smoothing
prior (e.g., [1], right) fail to capture the sharpness of the model.

Fully sampled

Missing region

Samples Result Zoom-in

Figure 2. OReX naturally completes regions with missing samples,
even as we omit them from the training process (red contours) Top
row: the complete reconstruction. Bottom row: samples in the
highlighted region are omitted. Everything else is trained as usual.
Left to right: Grout Truth mesh, samples used in training, ORex
reconstruction, with a zoomed-in view.

3. Quantitative comparisons
In Table 1, we expand our quantitative comparisons (Ta-

ble 1 in the main text). We compare our method to three oth-
ers: [1] is a method developed specifically for cross-section
reconstruction with similar settings. We attempted to run the
code for newer methods [3, 7], but could not produce results
for or inputs.

In addition, we compare to two point-cloud-based meth-
ods [2,6], using our setting and with additional input informa-
tion in the form of point normals. We measure performance
using both global geometry measures (Hausdorf distance,
Champfer Distance, and IoU of the reconstructed volumes),
as well as metrics on the input cross-sections themselves
(IoU in 2D). In all measures we demonstrate state-of-the-art

results. In Fig 5 we visualized closest-point distances of our
method.

4. Qualitative comparisons

Below are further visual comparisons with a recent point
cloud method (fig. 3) and a concurrent reconstruction method
based on slices (fig. 4). Our method produces watertight
meshes that smoothly interpolate the input.

Ours

Neural IMLS [Wang et al. 2021]

Figure 3. Comparison of OReX (bottom) to a recent point-cloud-
based method [5] (top). Point-cloud methods typically expect a
dense input covering the whole volume more or less uniformly;
hence artifacts appear when feeding cross-sectional input.

GT Input [Ostonov 22]OReX

Figure 4. Comparison of OReX to a concurrent work by Ostonov
[4]. Left to right: ground truth, input slices, our method, and
Ostonov 22.

5. Stats

In Table 2, we report statistics on the inputs we used.
Note the complexity of the shape as well as runtimes.



Input
Hausdorff distance CD IoU in 3d IoU in 2d

OReX Bermano et. al point2mesh point2mesh Neural-IMLS OReX Bermano et. al point2mesh point2mesh Neural-IMLS OReX Bermano et. al point2mesh point2mesh Neural-IMLS OReX Bermano et. al point2mesh point2mesh Neural-IMLS
plane normals GT normals plane normals GT normals plane normals GT normals plane normals GT normals

Eight 15 0.018 0.065 0.219 0.046 0.237 0.002 0.020 0.029 0.005 0.035 0.984 0.865 0.842 0.961 0.680 0.988 0.984 0.795 0.980 **
Eight 20 0.006 0.033 0.045 0.014 0.052 0.002 0.016 0.013 0.004 0.004 0.987 0.893 0.915 0.974 0.971 0.986 0.976 0.961 0.971 0.975
Elephant 0.056 0.081 0.100 0.086 0.312 0.006 0.015 0.018 0.010 0.031 0.966 0.908 0.885 0.935 0.803 0.975 0.969 0.850 0.908 **

Balloon dog 0.049 0.194 0.078 0.086 0.264 0.006 0.021 0.015 0.010 0.044 0.957 0.868 0.897 0.928 0.659 0.988 0.977 0.926 0.956 **
hand ok 0.063 0.177 0.195 0.135 0.207 0.008 0.024 0.015 0.013 0.040 0.955 0.860 0.921 0.931 0.707 0.987 0.968 0.908 0.882 0.765

Armadillo 0.050 0.121 0.057 0.059 0.827 0.009 0.017 0.016 0.011 0.212 0.939 0.891 0.891 0.921 * 0.964 0.776 0.850 0.868 *

Table 1. Quantitative comparisons. We measure performance using the global metrics Hausdorff distance, Champfer Distance, and
Intersection over Union (IoU) of the inner volume compared to the GT shape. In addition, we measure fidelity performance by reporting IoU
of the “inside” regions on the input cross-sections. We compare our result to a dedicated cross-section-based reconstruction method [1], to
two flavors of a point-cloud reconstruction method [2], and another recent point-cloud based method [6].

Input #slices #edges #samples (last set) Training time (h) Meshing time (h)
Armadillo 26 11039 290412 2.90 0.22

Balloon dog 15 4579 138684 1.51 0.22
Eight (S) 15 2028 87664 1.06 0.22
Eight (M) 20 3178 120904 1.40 0.21
Elephant 24 10429 274116 2.75 0.23
Hand OK 15 4082 128744 1.42 0.22
Oil lamp 34 17387 433756 4.13 0.22
Abdomen 42 53448 1067530 10.62 0.23

Heart 25 4534 158264 1.77 0.23
Horse 29 4101 157796 1.83 0.23

Twisted rose 15 9000 227104 2.26 0.27
Skull 16 8821 225572 2.31 0.33

Vertebrae 36 14844 386847 4.22 0.24

Table 2. Summary of our model zoo statistics. We report the number of planar cross-sections (#slices), contour complexity (i.e., the total
number of edges of the slices) (#edges), the number of points sampled on the last set, closest to the contour (#samples), training time (in
hours), and time to extract the mesh after training (meshing time, in hours)

Figure 5. Closest-point distances from the ground truth (left
meshes) to our reconstruction, and vice versa (right meshes). Scale
is relative to the bounding-box diagonal.
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