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Abstract

In this supplementary material, we first comment on
novelty in science in Section 1 before we show results
on integrating GHOST into to tracking appeoaches in
Section 2. The, we give the per-class performance of
GHOST on BDD100k validation set in Section 3. In
Section 4 we introduce the computation of the rate of
correct associations (RCA) followed by a deeper analysis
of it. We then conduct a deeper analysis of our domain
adaptation in Section 5. Afterwards, we show how we
choose parameters based on our analysis in Section 6
and deeper investigate on the usage of different proxies
in Section 6.1, the combination of appearance and motion
using different weights for the sum in Section 6.2, the
number of frames to be used to approximate the velocity
in Section 6.3 as well as on how to utilize different
thresholds in Section 6.4. Also, we conduct experiments
on different values of inactive patience in Section 7. Then,
we introduce how we generated the distance histograms
in Section 8. Moreover, in Section 9 we first outline the
difference between our approach and trackers with similar
components and compare the generality of our model to
the generality of ByteTrack [12] in Section 10. Finally,
we comment on the latency of our approach in Section 11,
and visualize several long-term occluded and low visibility
bounding boxes on MOT17 public detection that GHOST
successfully associates in Section 12.

1. "A painting can be beautiful even if it is
simple and the technical complexity is low.
So can a paper." [3].

Inspired by the blog post of Michael Black on novelty
in science [3], we would like to discuss the common
understanding of novelty in this paragraph. Despite often
confused, incremental changes do not necessarily mean
that a paper can not introduce novelty and novel ideas.

*Correspondance to j.seidenschwarz@tum.de.
†Currently at NVIDIA.

"If nobody thought to change that one term, then it is
ipso facto novel. The inventive insight is to realize that a
small change could have a big effect and to formulate the
new loss" [3]. Furthermore, it is of major importance to
sometimes step back and formulate "a simple idea" since
this "means stripping away the unnecessary to reveal the
core of something. This is one of the most useful things that
a scientist can do." [3]. If a simple idea improves the state
of the art, "then it is most likely not trivial" [3]. Technical
novelty is the most obvious type of novelty that reviewers
look for in papers, but it is not the only one [3]. In our
understanding, if the reader takes away an idea from the
paper that changes the way they do research, this can be
considered a positive impact of the paper. Hence, the paper
is novel (it has sparked a new idea in the reader’s mind). We
hope readers also see it that way and we can progress with
simpler, more interpretable, stronger models, and not only
complex transformer-based pipelines trained on huge GPU
farms.

2. Integrating GHOST within Other Trackers.

Our baseline in the main paper is the simple Hungarian
tracker in introduced in Sec 3.1. Furthermore, we apply
GHOST additionally to other trackers as visualized in Fig
3 of the main paper. However, to show that it can also be
integrated into existing trackers, in Tab 2 we provide the
performance of utilizing our reID instead of the baseline
reID in Tracktor on MOT17. Since Tracktor on its own
is a motion model we cannot apply our linear motion.
Moreover, we provide results on utilizing our reID model
and our linear motion instead of the Kalman Filter in
ByteTrack on DanceTrack. Apart from the gain of using
reID, the Kalman Filter struggles with the extreme motion
while we can adapt the number of frames for velocity
computation to the dataset.

3. Per-Class Evaluation on BDD100k
Validation Set

In this section, we show the class-wise performance on
the BDD100k validation set (Table 1). As on the test set (see



ByteTrack [12] QDTrack GHOST
HOTA ↑ IDF1 ↑ MOTA ↑ HOTA ↑ IDF1 ↑ MOTA ↑ HOTA ↑ IDF1 ↑ MOTA ↑ # GT det

pedestrian 48.2 58.8 56.0 46.9 59.8 49.1 48.9 59.9 54.8 56865
rider 42.9 56.3 45.1 38.0 51.7 35.2 44.7 60.6 47.0 2527
car 64.5 72.8 73.5 64.5 74.9 69.5 64.5 73.5 72.9 339521
bus 60.5 70.6 56.2 52.7 62.3 40.7 59.9 70.0 56.0 9035
truck 53.3 61.1 47.9 48.9 58.1 39.2 54.0 63.4 48.2 27280
train 0 0 0 0 0 0 0 0 -0.6 307
motorcycle 47.8 59.7 39.6 43.5 56.1 28.4 48.3 62.5 40.0 898
bycicle 46.0 57.6 43.4 38.9 49.2 28.6 45.0 55.1 41.1 4123
class average 45.4 54.6 45.2 41.7 51.5 36.3 45.7 55.6 44.9 440556
detection average 61.6 70.2 68.7 60.9 71.4 63.7 61.7 70.9 68.1 440556

Table 1. Class-Wise BDD100k Validation Set Performance.

(a) MOT17-02 S (b) MOT17-04 S (c) MOT17-05 M (d) MOT17-09 S

(e) MOT17-10 M (f) MOT17-11 M (g) MOT17-13 M

Figure 1. RCA for static S and moving M sequences with respect to visibility.

Original Original + GHOST
dataset HOTA IDF1 MOTA HOTA IDF1 MOTA

ByteTrack DanceTrack 47.1 51.9 88.3 54.0 89.5 54.5
Tracktor MOT17 57.7 65.9 61.8 58.7 67.5 61.8

Table 2. Applying GHOST in other Trackers.

main paper), we perform better than ByteTrack [12] and
QDTrack [7] in the overall IDF1 and HOTA metrics as well
as in IDF1 and HOTA of less frequent classes like rider, bus,
bycicle. On the other hand, QDTrack [7] outperforms us
in the overall IDF1 metric per detection box, mainly due to
their higher performance for highly frequent classes like car
or pedestrian. This shows that QDTrack works well only for
highly frequent classes, indicating a high dependency to the
train set. Note, our model is only trained on the pedestrian
class, which makes our performance on other classes a good
demonstration of the generality of our approach.

4. Detailed Analysis of Rate of Correct
Associations per Sequence

We show a per sequence analysis of the rate of correct
associations (RCA) of motion and appearance with respect
to visibility in Fig 1, and short-term vs. long-term

association in Fig 2 where M indicates moving sequence
and S indicates static sequence. For this we first introduce
how to compute the RCA value.
Computation of RCA. Given the output file of a tracker,
to compute the rate of correct associations (RCA), we
first match the given detections to ground truth identities
following the same matching as the one used for the
computation of the MOTA metric [4]. For each detection
oi, we then find the last previous detection that belongs to
the same ground truth ID oi,prev . If oi was assigned to the
same tracker ID as oi,prev , we count it as a true positive
association (TP-Ass), and if it was assigned to a different
tracker ID, we count it as a false positive association (FP-
Ass). This leads to the RCA value:

RCA =
TP-Ass

FP-Ass + TP-Ass
, (1)

To get the performance for different visibility levels and
occlusion time, we organize oi into bins. For example,
when we investigate the performance for visibility 0−33%,
we take only detections oi into account that are 0 − 33%
visible. The same holds for occlusion time: if we investigate
occlusion time 0.5 − 0.7s, we only take detections oi
into account whose prior detection of the same ground



(a) MOT17-02 S (b) MOT17-04 S (c) MOT17-05 M (d) MOT17-09 S

(e) MOT17-10 M (f) MOT17-11 M (g) MOT17-13 M

Figure 2. RCA for static S and moving M sequences with respect to short-term vs. long-term associations.

truth ID was 0.5 − 0.7s ago. This procedure allows us
to investigate the performance of different trackers with
respect to different influencing factors solely based on the
detection output files.
Visibility. Motion cues perform better especially in
the static sequences MOT17-02 and MOT17-04. In
the static sequence MOT17-09, which is recorded from
a low viewpoint, and the moving sequences MOT17-
05, MOT17-10, and MOT17-11, motion and appearance
perform approximately on par. In MOT17-13, which
shows heavy camera movements, the performance of the
motion model drops significantly. Those observations show
that for suitable camera angles in static sequences motion
outperforms appearance independent of the visibility, while
for sequences with severe camera movement or unsuitable
camera angles, appearance outperforms motion even for
low visibility scenarios. For moving camera sequences,
the motion of the object and the camera add up, resulting
in more noisy and non-linear motion observed in pixel
space, even though the underlying motion might be linear.
Similarly, a low viewpoint leads to a distorted observation
of the underlying motion from the camera perspective.
When the camera angle comes closer to a bird’s eye
view perspective (MOT17-04) the observed motion is less
distorted.
Occlusion time. Fig 2 shows that all moving sequences
show a higher RCA for appearance than motion cues.
For static sequences, motion performs slightly better in
MOT17-02 and MOT17-04. In the static sequence MOT17-
09, the sequence recorded from a low viewpoint, both
perform approximately on par. For suitable camera angles
motion is a good cue even for long-term associations in
static sequences, while appearance outperforms motion
even for short-term associations in moving ones. This
stems from the fact that motion gets more non-linear
observed from camera perspective in moving camera
sequences. While appearance still suffers from occlusion
in static sequences even when recorded from a well-suited

camera angle, those conditions allow for surprisingly well
performance of motion even with respect to long-term
associations.

5. A Deeper Analysis on on-the-fly Domain
Adaptation

In the main paper, we visualize the distance histograms
between active and inactive tracks to new detections of the
same or different classes (see Fig 2 main paper). In this
section, we show that the intersection point that divides the
distance histograms between active (inactive) tracks of the
same and different classes well varies less over the different
sequences when using our on-the-fly domain adaptation
(see Fig 2(b) in main paper) compared to when not using
it (see Fig 2(a) in main paper). Furthermore, we show that
the distributions are generally more similar and stable over
different sequences with out on-ht-fly domain adaptation.
Intersection Points. Given the distribution fa,d of
distances between active tracks (a) and new detections of
a different ID (d) and the distribution fa,s of distances
between active tracks and new detections of the same ID
(s), we find a well suited intersection point xa

s,d
∗ separating

both distributions by minimizing the sum of the costs of
false positive and false negative matches. Towards this
end, for a given point xa

s,d we define the false positive
costs as percentile value of fa,d at xa

s,d given by p
xs,d

a,d ,
i.e., the percentile of fa,d that lies left to xa

s,d. We define
the false negative cost for xa

s,d as 100 − p
xs,d
a,s utilizing the

percentile value of fa,s at xa
s,d since we want to punish the

false negatives that lie to the right of this point. Similar
points xa

s,d across sequences allow to choose one single
well-suited threshold τact over all sequences. The same
holds for the inactive track distributions fi,s and fi,d and
the corresponding xi

s,d of the different sequences. As
we visualize in Fig 5, xi

s,d varies significantly less across
tracking sequences when using our on-the-fly DA compared
to when not using it.
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(b) With on-the-fly domain adaptation.

Figure 3. Cumulative sum of absolute bin difference between fa,d and fa,s on MOT17 validation set.
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(b) With on-the-fly domain adaptation.

Figure 4. Cumulative sum of absolute bin difference between fa,d and fa,s on MOT17 validation set.
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Figure 5. Visualization of the intersection points between distance
histograms from detections to inactive tracks of the same and
different identities when using domain adaptation (DA) compared
to when not using it.

Similarity and Stability. While the variance of xa
s,d is

higher for both settings, i.e., with and without the on-the-
fly DA, the distributions are generally more separated when
using DA compared to when not using it. To show this,
we conduct a second experiment. For each sequence, we
define the same bins in the range from 0 − 1 and turn the
distributions fa,d and fa,s into histograms ha,d and ha,s.
In each bin i we compute the absolute difference between
the two histograms da,i and normalize it by the sum of
all absolute distances. Finally, we plot the cumulative
histogram (see Fig 3). The more aligned the cumulative
histograms over all sequences and the broader the saddle
point, the more similar the sequences across each other
and the better separated the distributions of the same and

different IDs, respectively. Note, that the cumulative sums
of the different sequences are much more aligned when
utilizing on-the-fly domain adaptation (see Fig 3b) than
when not using it (see Fig 3a) which makes it easier to find a
common threshold τact. Moreover, the saddle point is much
broader when using on-the-fly domain adaptation which
makes our approach more stable with respect to different
thresholds τact.

Despite the difference visualization for the inactive
track distributions being less unified over the sequences
in general, the differences over the different sequences
when using on-the-fly domain adaptation are more aligned
compared to when not using it (see Fig 4). Combined with
the less varying xi

s,d
∗, this leads not only to an overall better

suited but also more stable threshold τinact.

6. Using the Knowledge of our Analysis.
In our work we present an in-depth analysis on

appearance distance computation based on embedding
features (see Fig 2 in the main paper) as well as motion
vs. appearance model performance (see Fig 3-6 in the main
paper). Based on those insights we introduce our simple
tracker GHOST. For example, we utilize the analysis of the
differences between the reID distance of active and inactive
tracks to detections to adapt the thresholds and and choose
a proxy distance computation method. Also, we utilize the



inisghts that reID performs worse for high occlusion levels
and linear motion performs worse in moving camera scenes
and with extreme motion to adapt the motion weight as well
as the number of frames used in the motion model. We do
not only present GHOST but also a large number of analysis
that reveal insights for the community. In the following
we provide a deeper analysis on the hyperparameters and
design choices of GHOST for the single datasets.

6.1. The Usage of Different Proxies
We now explore different proxies for the distance

computation between new detections and inactive tracks.
We start from the feature vectors generated using our reID
network and normalize them before further processing. As
introduced in the main paper, we utilize the mean of the
distances of a new detection to all detections of an inactive
track. This proxy distance between new detection i and
inactive track k is given by:

d̃(i, k) =
1

Nk

Nk∑
n=1

d(fi, f
n
k )

=
1

Nk

Nk∑
n=1

1− fi · fn
k

||fi|| · ||fn
k ||

= 1− 1

Nk

Nk∑
n=1

fi · fn
k

(2)

where Nk is the number of detections in the inactive track
and fn

k is the feature vector corresponding to its n-th
detection. We omit ||fi|| · ||fn

k || as we normalize all feature
vectors.

Another option is to first compute a proxy feature vector
and then compute the distance between a new detection and
the proxy feature vector. We investigate four proxy feature
vector computations and compare them on the validation set
of all four datasets.
Mean Feature Vector. The mean feature vector of all
detections in the inactive track k which is also used in
Tracktor [2] is given by

f̃k =
1

Nk

Nk∑
n=0

fn
k (3)

Computing the cosine distance of this mean feature vector
leads to

d̃(i, k) = 1−
fi · 1

Nk

∑Nk

n=1 f
n
k

||fi|| · || 1
Nk

∑Nk

n=1 f
n
k ||

= 1−
∑Nk

n=1 fi · fn
k

||
∑Nk

n=1 f
n
k ||

(4)

This differs from our proxy distance by the normalization
constant 1

||
∑Nk

n=1 fn
k ||

.

Mode Feature Vector. Compared to the mean feature
vector, the feature vector of inactive track k is given by the
value that appeared most in each feature dimension.
Median Feature Vector. Viewing fn

k as a random variable,
in each dimension the median feature vector contains the
value for which 50% of the probability mass of feature
values in this dimension lies on the right and left of it, i.e.,
it divides the probability mass into two equal masses.
Exponential Moving Average Feature Vector. Utilizing
the exponential moving average (EMA) as feature vector as
done in JDE [8] or FairMOT [13] means that at given a new
detection, the feature vector is updated by:

f̃ t
k = f̃ t−1

k ∗ α+ f t
k ∗ (1− α) (5)

where f̃ t−1
k is the EMA feature vector at the previous time

step, f t
k is the feature vector of the new detection, and α =

0.9 is a weighting factor. The EMA feature vectors build
on the underlying assumption that feature vectors should
change only slightly and, therefore, smooths the feature
vector development.

We show the performance drop on different datasets
when using different proxies in Fig 6. Ours, i.e., the
mean distance shows the most stable performance over the
different datasets and we, therefore, decided to utilize this
proxy.

6.2. The Impact of Motion Weights

In this subsection, we visualize the performance drop
when utilizing different motion weights on different
datasets (see Fig 7). On MOT17 public detections, the
best performance is achieved when using motion weight
0.4 while for private detections the best weight is 0.6.
This is caused by the fact, that the appearance model
gets less certain with increasing occlusion level and the
private detections set contains more difficult, i.e., occluded
detections. On MOT20 private detections a motion weight
of 0.8 for private detections performs best as the occlusion
level is generally much higher than on MOT17 dataset. On
DanceTrack dataset, the best motion weight is 0.4. Since the
motion and articulation on this dataset are generally more
diverse and extreme, the performance of the motion model
is less certain compared to the appearance model. BDD
dataset solely contains sequences recorded using a moving
camera. As we showed in the main paper, the performance
of the motion distance decreases when moving cameras are
used. This is due to the fact, that the observed motion gets
less linear since the motion of the camera and the object
add up. Consequently, a motion weight of 0.4 works best
on BDD100k MOT dataset. All those observations are in
line with our analysis in the main paper as well as the more
detailed analysis in this supplementary in Section 4.



BDD DanceTrack MOT17 MOT20
motion moving cam extreme motion partially moving cam static cam
occlusion medium medium medium high
motion weight 0.4 0.4 0.6 0.8
# frames motion model 10 5 90 30

Table 3. Motion Model Parameters.

M17Pr M17Pu M20 DT BDD
Datasets
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Mode
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Mv Av

Last
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ox

ie
s

-0.30 -0.30 -1.50 0.00 -2.70

-0.30 -1.00 0.00 -0.50 -1.10

-0.30 0.00 -1.50 -0.60 -2.60

-0.10 -0.70 -3.10 -0.80 -2.10

-0.70 -0.90 -2.60 -0.90 -1.70

0.00 -0.10 -0.20 -0.50 0.00

(a) HOTA

M17Pr M17Pu M20 DT BDD
Datasets
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Mode
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-0.70 -0.60 -2.60 0.00 -4.30

-0.30 -2.20 0.00 -3.00 -2.40

-0.60 0.00 -2.70 -0.60 -4.30

-0.70 -1.30 -5.30 -0.80 -3.70

-1.00 -1.90 -4.70 -0.90 -3.10

0.00 -0.50 -0.30 -1.10 0.00

(b) IDF1
Figure 6. Drop in Performance for Different Proxies on Different Datasets. M17Pr = MOT17 private detections, M17Pu = MOT17 public
detections, M20 = MOT20 public detections, DT = DanceTrack, BDD = BDD100k. Mean = Mean Feature, Mode = Mode Features,
Median = Median Features, Mv Av = Moving Average of Features, Last = Last Features, Ours = Our Proxy Distance.

6.3. The Impact of Different Numbers of Frames
for Velocity Computation

The less linear the motion or the observed motion, the
fewer frames approximate the future motion better. We
visualize the impact of different numbers of frames in
Fig 8. While on MOT17 private detections, the linear
motion model performs well using the positions of the last
90 tracks (or less if a track contains less), on MOT20 using
only the last 30 frames performs best since the scenes are
highly crowded and, therefore, the motion is less linear.
On DanceTrack, the motion is more extreme and, therefore,
using only the last 5 frames approximates the future motion
best. Similarly, on BDD100k as the observed motion is
more non-linear due to the combination of the camera
motion and the object motion utilizing only the last 10
frames to approximate the motion performs best. The lower
frame rate of BDD sequences compared to the frame rate of
MOT17, MOT20 and DanceTrack even increases this effect,
since more time passes within the same number of frames
on BDD. Overall, as already stated in the main paper, short-
term future motion can be approximated fairly well utilizing
a linear motion model. Depending on the characteristics of
the motion, a different number of frames approximates the
future motion best and, therefore, leads to the best tracking
results.

6.4. How to use Different Thresholds τi

As stated in Subsection 3.2. in the main paper, we utilize
different thresholds for active and inactive tracks. While

commonly only one threshold is used, we empirically find
that it is beneficial to allow different ones. Therefore, we
apply the thresholds after the bipartite matching to filter the
detection-trajectory pairs (i, j). We visualize our matching
in Algorithm 1. n represents the number of active track,
τact and τinact the threshold for active and inactive tracks
and d the cost matrix.

7. Different Inactive Patience Values

Similar to other approaches [2, 5, 8, 9, 13] that only keep
inactive tracks for a fixed number of frames, called inactive
patience, we keep them for 50 frames for all datasets. To
show that this choice is reasonable, we visualize HOTA,
IDF1, and MOTA on MOT17 validation set for different
inactive patience values in Fig 9. We use the same setting
as in sections 4.4 and 4.5 in the main paper, i.e., we use
the bounding boxes of MOT17 validation set of several
private trackers. The performance drops heavily for inactive
patience 0 and then only slightly changes up to using all
frames of a sequence after 30 frames.

8. Computation of Distance Histograms

In the main paper, we visualize distributions of distances
from active and inactive tracks to detections of the same
and different classes in Fig 2. In Fig 2(a) we utilize
the embeddings of the last detection of any existing
track to compute the distance to the embeddings of new
detections, in Fig 2(b) we utilize the distance computation
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Figure 7. Drop in Performance for Different Motion Weights on Different Datasets. M17Pr = MOT17 private detections, M17Pu = MOT17
public detections, M20 = MOT20 public detections, DT = DanceTrack, BDD = BDD100k.
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Figure 8. Drop in Performance for Different Number of Frames for Velocity Computation on Different Datasets. M17Pr = MOT17 private
detections, M17Pu = MOT17 public detections, M20 = MOT20 public detections, DT = DanceTrack, BDD = BDD100k.
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Figure 9. Performance on MOT17 public validateion set with respect to different inactive patience values.

as introduced in Sec 3.2, and in 2(c) we visualize the motion
distance. Since different distance metrics could be applied
for feature vector distance and motion distance, we define
both in Sec 4.1. To generate those distributions, we first
match given detections to ground truth identities following
the same matching as used for the computation of the
MOTA metric [4]. If a detection of the same ID occurred

in the last frame, we compute the distance to it and add
it to the distances between active tracks and detections of
the same ID. Similarly, if there was a detection present
but not in the last frame, we compute the distance and
add it to the distances from inactive tracks to detections
of the same ID. Afterwards, we compute the distances to
all other IDs that occurred in the last frame as well as



Algorithm 1: Assignment with different thresholds

Data: n, τact, τinact, cost matrix d ∈ R|T |×|D|;
Result: approved rows, approved cols;
approved rows = ∅, approved cols = ∅;
matched rows,matched cols = Bipartite(c);
for r, c in zip(matched rows,matched cols) do

if r < n and dr,c < τact then
approved rows = approved rows + r;
approved cols = approved cols + c;

else if r >= n and dr,c < τinact then
approved rows = approved rows + r;
approved cols = approved cols + c;

else
Discard Match.;

end
end

to all other IDs that occurred prior to the last frame and
add them to the distances from detections to active and
inactive tracks of a different ID, respectively. We can add
inactive patience and proxy computation methods to this
basic framework. Despite we only show the distributions
for MOT17 validation set, this method can be used for any
dataset for which ground truth detections are available.

9. On Similar Approaches
In this section, we discuss the differences between state-

of-the-art trackers that share some of their components with
GHOST. ByteTrack [12] uses a Kalman Filter as motion
model while we use a more simple linear motion model.
More importantly, the authors treat active and inactive
tracks the same but distinguish between high and low
confidence detections, i.e., they differentiate on a detection
level while we differentiate on track level. However, as
we showed in the main paper, active and inactive tracks
show significant differences and treating them the same
way does not leverage the full potential of the underlying
cues. Also, their assignment strategy leads to a multi-
level association process while GHOST only requires a
single association step. Similarly, in [1] the authors treat
high and low confidence tracks differently, i.e., high
confidence tracks are assigned locally to new detections
and low confidence tracks are globally assigned with other
tracks and detections. The inactivity of a track is only
one factor of confidence. Note that this again involves
multiple bipartite matchings while we assign active and
inactive tracks at the same time which only requires one.
The authors of DeepSORT [11] utilize a Kalman filter as
well as an appearance model. However, the parameter
that weights appearance and motion is set to λ = 0, i.e.,
only appearance is considered. However, as we show in

our analysis motion can compensate for failure cases of
appearance, especially in low visibility regimes making our
approach more robust. Moreover, the authors propose a
cascaded matching strategy that requires more than one
bipartite matching per frame while we, again, only require
one. With respect to domain adaptation, HCC [6] trains on
tracking sequences and uses sophisticated test-time mining
to fine-tune. We rely on a simpler scheme and do not need
any of the above.

Despite all of the above-mentioned approaches showing
similarities to our approach, they still differ with respect
to significant design choices positioning our approach as a
complementary work with respect to them. Furthermore,
our approach leverages the motion and appearance cues in a
simple yet highly effective and general way without multi-
level association procedures.

10. On the Generality of ByteTrack [12]
Recently, ByteTrack [12], which also follows the

tracking-by-detection paradigm, also reported results on
MOT17 and MOT20 as well as on the highly different
datasets DanceTrack and BDD100k MOT. In this section,
we compare GHOST to ByteTrack with respect to
generality. Despite not being mentioned in the paper, the
authors add tricks to the tracking procedure which are
different for each dataset. First, they multiply their IoU
cost matrix, which they obtain by using a Kalman Filter,
by the detection confidence when applying their tracker
to MOT17, but not when applying it to other datasets.
Second, the authors apply interpolation on MOT17 and
MOT20 datasets which turns their approach into an offline
approach. Third, on DanceTrack and BDD100k, they allow
all bounding boxes to be used, while they filter out bounding
boxes if w

h > 1.6 on MOT17 and MOT20, where w and h
are bounding box width and height, respectively. Fourth,
ByteTrack uses a reID model, namely UniTrack [10], on
BDD100k dataset whilst they do not use any reID model on
the other datasets. Fifth, they adapt the tracking thresholds
per sequence on MOT17 and MOT20 during training and
testing. On BDD and DanceTrack the tracking thresholds
are applied per dataset. Sixth, as commonly done the
authors adapt other model parameters, e.g., the matching
thresholds, confidence threshold for detections as well as
the confidence threshold for new tracks.

We believe these are small but significant changes
that put into question the generality of ByteTrack. In
contrast, we keep our tracking pipeline the same over
different datasets but solely change our model parameters
for each dataset as a whole. To be specific, we adapt the
thresholds τi, the detection confidence thresholds to filter
plain detections and start new tracks, the motion weights,
as well as the number of frames used in the linear motion
model. This makes our approach more general and easier to



apply to new datasets.

11. Latency
For a fair comparison with other methods, we evaluated

GHOST, Tracktor [2], and FairMOT [13] on the public
detections on the MOT17 validation set utilizing the same
GPU, namely a Quadra P6000. Note that we utilize
CenterTrack pre-processed detections here. With 10FPS
GHOST is on the same magnitude of speed as current
SOTA trackers. While Tracktor [2] runs at 2FPS, FairMOT
[13] runs at 17FPS as it was optimized for real-time.
When evaluating the private detection setting, our method’s
latency increases slightly due to the increase of bounding
boxes to process to 6FPS. The average latency per frame
and per model part is given by 10ms for the computation of
the reID features, 30ms for the reID distance computation,
0.1 ms for updating the velocity per track, 0.0025ms for
the motion step per track, 0.4ms for the motion distance
computation, 0.35ms for the biparite matching, and 0.1ms
for updating all tracks.

12. Visualizations
In this section, we visualize associations on CenterTrack

re-fined public bounding boxes that our model is able to
correctly associate while CenterTrack is not. Correct and
wrong associations are determined in the same way as
done for the computation of the RCA Section 4. This
means we determine wrong associations by first matching
all detection bounding boxes to the ground truth IDs. A
wrong association is given if the prior detection of the same
ground truth ID as a current detection was assigned to a
different tracker ID than the current detection. In Figures
10-17, we visualize the prior detection on the left side
and the current detection on the right side. All examples
were associated wrongly by CenterTrack and correctly by
GHOST. We give the time distance between the prior and
the current frame in the caption as well as the visibility
level of the re-appearing pedestrian. By our combination
of appearance and motion, we are able to correctly associate
pedestrians after long occlusions and low visibility in highly
varying sequences.
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Figure 10. Occlusion time: 2s, visibility of re-appearing pedestrian: 0.6.

Figure 11. Occlusion time: 1.1s, visibility of re-appearing pedestrian: 0.3.

Figure 12. Occlusion time: 9.4s, visibility of re-appearing pedestrian: 0.4.

Figure 13. Occlusion time: 1.1s, visibility of re-appearing pedestrian: 0.5.



Figure 14. Occlusion time: 1.1s, visibility of re-appearing pedestrian: 0.2.

Figure 15. Occlusion time: 0.1s, visibility of re-appearing pedestrian: 0.6.

Figure 16. Occlusion time: 0.9s, visibility of re-appearing pedestrian: 0.5.

Figure 17. Occlusion time: 0.2s, visibility of re-appearing pedestrian: 0.8.


