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A. Convergence Analysis

Synopsis. In these theorems, we prove that the worst
case performance of Aligned-MTL and Aligned-MTL-UB
approaches is no worse than of standard gradient descent.
The constraints mentioned in convergence theorems below
are mild enough to be satisfied in practice. Our approach
converges to a Pareto-stationary point with pre-defined tasks
weights, thus providing more control over an optimization
result.

Lemma 1 Assume L(θ) to be continuously differentiable
and ∇L(θ) to be Lipschitz continuous with Λ > 0. Then,
the following restriction holds for a gradient descent with a
step size α and an update rule r:

L(θt)− L(θt+1) ≥ α⟨∇L(θt), r ⟩ −
α2Λ

2
∥r∥2. (1)

Proof Let us consider a gradient descent θt+1 = θt + δ,
where δ = −αr. From the fundamental theorem of calculus,
we derive:

L(θt + δ)− L(θt) =
∫ 1

0

⟨∇L(θt + sδ), δ ⟩ds. (2)

By adding and subtracting the value ⟨∇L(θt), δ ⟩ =∫ 1

0
⟨∇L(θt), δ ⟩ds, we obtain:

L(θt+1)− L(θt) = ⟨∇L(θt), δ ⟩ + (3)

+

∫ 1

0

⟨∇L(θt + sδ)−∇L(θt), δ ⟩ds. (4)

Since the gradient satisfies the Lipschitz condition
∥∇L(θt + sδ) − ∇L(θt)∥ ≤ Λ∥θt + sδ − θt∥ and due
to inequality ⟨x, y ⟩ ≤ ∥x∥∥y∥, we can transform the inte-
gral as following:

L(θt+1)− L(θt) = ⟨∇L(θt), δ ⟩ +

+

∫ 1

0

⟨∇L(θt + sδ)−∇L(θt), δ ⟩ds ≤

⟨∇L(θt), δ ⟩ +

∫ 1

0

Λ∥θt + sδ − θt∥∥δ∥ds ≤

−α⟨∇L(θt), r ⟩ + Λ

∫ 1

0

∥ − sαr∥2∥ − αr∥2ds ≤

−α⟨∇L(θt), r ⟩ + α2Λ∥r∥2
∫ 1

0

sds ≤

−α⟨∇L(θt), r ⟩+ α2Λ∥r∥2

Therefore, we obtain the final constraint:

L(θt+1)− L(θt) ≤ −α⟨∇L(θt), r ⟩+ α2Λ∥r∥2. (5)

Theorem 1 (Aligned-MTL) Assume L0(θ), . . . ,LT (θ)
are lower-bounded continuously differentiable functions
with Lipschitz continuous gradients with Λ > 0. A gradient
descent with an aligned gradient and a step size α ≤ 1

Λ
converges linearly to a Pareto-stationary point where
∇L0(θ) = 0.

Proof (Aligned-MTL) Given the aforementioned assump-
tions, the cumulative objective satisfies Lemma 1 with r =
Ĝw = ĝ0 and ∇L0(θ) = Gw = g0:

L(θt)− L(θt+1) ≥ αg⊤
0 ĝ0 −

α2Λ

2
∥ĝ0∥2. (6)

According to SVD, G = UΣV ⊤, Σ =
diag{σ1, . . . , σR} where R = rankG, and U⊤U = I . By
definition of the Aligned-MTL, we get:

g⊤
0 ĝ0 = σRw

⊤V ΣU⊤UV ⊤w =

= σRw
⊤V ΣV ⊤w =

R∑
r=1

σRσr(w
⊤vr)

2

1



Similarly, ∥ĝ0∥2 =
∑R

r=1 σ
2
R(w

⊤vr)
2. Since α ≤ 1

Λ and
w⊤vr > ε, Eq. (6) can be further bounded:

L(θt)− L(θt+1) ≥ σ2
R

α

2

R∑
r=1

(
2
σr

σR
− 1

)
︸ ︷︷ ︸

>1

(
w⊤vr

)2

︸ ︷︷ ︸
>∥V w∥2>ε2

>

>
ασ2

R

2

ε2

σ2
1

σ2
1 .

The dominance is always finite: σR

σ1
> C. Moreover, σ1 =

maxx̸=0
∥Gx∥
∥x∥ , therefore σ1 ≥ ∥g0∥

∥w∥ . Respectively:

L(θt)− L(θt+1) >
αε2C2

2∥w∥2
∥g0∥2. (7)

The sequence of L(θt) is monotonically decreasing and
bounded (under assumption), and hence converging. Then
L(θt)− L(θt+1) → 0 if t → ∞. Thereby, we have a local
convergence of the gradient descent:

∥g0∥2 <
2∥w∥2

αC2ϵ2

(
L(θt)− L(θt+1)

)
→ 0 as t → ∞.

(8)
The same estimate appears in case of the gradient descent.

Accordingly, the convergence of Aligned-MTL is similar to
that of the gradient descent, i.e. linear – O( 1

T ).

Theorem 2 (A-MTL-UB) Assume L0(θ), . . . ,LT (θ) are
lower-bounded continuously differentiable functions with
Lipschitz continuous gradients with Λ > 0. Suppose J =
∂H
∂θ to be a full rank, i.e. rankJ = min{|θ|, |H|}. A

gradient descent with an aligned gradient and a step size
α ≤ 1

Λ converges linearly to a Pareto-stationary point where
∇L0(θ) = 0.

Proof (Aligned-MTL-UB) Similarly to the Theorem 1, un-
der the aforementioned assumptions, the cumulative ob-
jective satisfies Lemma 1 with r = σRJẐw = ĝ0 and
∇L0(θ) = JZw = g0:

L(θt)− L(θt+1) ≥ αg⊤
0 ĝ0 −

α2Λ

2
∥ĝ0∥2. (9)

According to SVD, Z = UΣV ⊤, Σ =
diag{σ1, . . . , σR} where R = rankZ, and U⊤U = I . By
definition of the Aligned-MTL-UB, we get:

g⊤
0 ĝ0 = σRw

⊤V ΣU⊤J⊤JUV ⊤w

ĝ⊤
0 ĝ0 = σ2

Rw
⊤V U⊤J⊤JUV ⊤w

Since J is full rank, J⊤J is positive definite. Any positive
definite matrix is congruent to a diagonal (D) with positive

and ordered eigenvalues on the main diagonal. Thus, re-
placing all eigenvalues λ2

i with the smallest one λ2
K does

not increase the inner product produced by this matrix:
xDx ≥ λKx⊤x. By taking this into consideration, we
can bound the right side of Eq. (9):

L(θt)− L(θt+1) ≥
α

2
(2g0 − ĝ0)

⊤ĝ0 ≥
α

2
(2σRw

⊤V ΣU⊤ − σ2
Rw

⊤V U⊤)J⊤JUV ⊤w ≥

σ2
Rλ

2
K

R∑
r=1

(
2
σr

σR
− 1

)
︸ ︷︷ ︸

>1

(
w⊤vr

)2

︸ ︷︷ ︸
>∥V w∥2>ε2

Thus:

L(θt)− L(θt+1) ≥
αε2σ2

Rλ
2
K

2σ2
1λ

2
1

σ2
1λ

2
1. (10)

Following the assumption, σR

σ1
> Cσ and λK

λ1
> Cλ.

Moreover, σ1 = maxx̸=0
∥Zx∥
∥x∥ ≥ ∥Zw∥

∥w∥ and λ1 = ∥J∥.
Therefore, we obtain the final bound:

L(θt)− L(θt+1) ≥
αε2C2

σC
2
λ

2∥w∥2
∥GZw∥2∥J∥2 ≥

αε2C2
σC

2
λ

2∥w∥2
∥g0∥2.

The sequence of L(θt) is monotonically decreasing and
bounded (under assumption), and hence converging. Then
L(θt)− L(θt+1) → 0 if t → ∞. Thereby, we have a local
convergence of the gradient descent:

∥g0∥2 <
2∥w∥2

αC2
σC

2
λε

2

(
L(θt)−L(θt+1)

)
→ 0 as t → ∞.

(11)

B. Condition Number
The stability criterion is closely related to the dominance

and conflicts. We can find a functional dependence between
them for some special cases: a) gradients g1 and g2 have
equal magnitude but not orthogonal, b) they are othogonal
but have different norms. To this end, we formulate the
following colloraries.

Collorary 1 Given g1 ⊥ g2 condition number κ is

κ = max

{
∥g1∥
∥g2∥

,
∥g2∥
∥g1∥

}
Proof By initial assumtions the Gram matrix G⊤G is diag-
onal:

G⊤G = diag{∥g1∥2, ∥g2∥2}



Figure 1. The condition number depends on the angle between gra-
dient vectors. Due to the symmetry one of the principal components
is a bisectrix of this angle.

At the same time, this matrix can be factorized using eigen
decomposition:

G⊤G = V Σ2V ⊤, V V ⊤ = I, Σ = diag{σ1, σ2}

Thus, the singular values are proportional to the gradient
magnitudes up to a symmetric swap to keep ordering of singu-
lar values. The coefficient of proportionality is not valuable,
since the condition number is invariant to the global scale.
Therefore, we derive:

κ = max

{
∥g1∥
∥g2∥

,
∥g2∥
∥g1∥

}

Collorary 2 Given g1 and g2 with equal magnitudes, i.e.
∥g1∥ = ∥g2∥, and with α angle in between the condition
number κ is

κ =

{
tan(α/2) π

4 < α/2 ≤ π
2

ctan(α/2) 0 < α/2 < π
4

(12)

Proof The direct collorary of SVD states, that the princi-
pal components ui are direction with maximum norm of
projections over all gradients. Formally:

σ1 = max
∥x∥=1

∥G⊤x∥ = ∥G⊤u1∥

σ2 = max
∥x∥=1,x⊥u1

∥G⊤x∥ = ∥G⊤u2∥

Since the gradients have the same length, one of the principal
components is the bisectrix of angle between them. For clar-
ity, we suppose, that the bisectrix is the second component.
Then, the singular values can be computed trivially (Fig. 1):

σ1 =
√
2 sin(α/2)∥g1∥

σ2 =
√
2 cos(α/2)∥g1∥

Accroding to these expressions the condition number is tan-
gent or cotangent up to a symmetric swap to keep ordering
of singular values. In orthoginal case, the condition number
is unit.

C. Synthetic Example
The synthetic example is a two-task objective containing

areas with the presence of conflicting and dominating gradi-
ents between loss components. Formally, we use the same
objective as in previous works [2, 5]:

L1 = c1(θ)f1(θ) + c2(θ)g1(θ)

L2 = c1(θ)f2(θ) + c2(θ)g2(θ)

θ ∈ R2

where

h1(θ) =

∣∣∣∣ (−θ1 − 7)

2
− tanh (−θ2)

∣∣∣∣
h2(θ) =

∣∣∣∣ (−θ1 + 3)

2
− tanh (−θ2) + 2

∣∣∣∣
c1(θ) = max(tanh

(
θ2
2

)
, 0)

c2(θ) = max(tanh

(
−θ2
2

)
, 0)

f1(θ) = logmax
(
h1(θ), 5 · 10−6

)
+ 6

f2(θ) = logmax
(
h2(θ), 5 · 10−6

)
+ 6

g1(θ) =
(−θ − 7)2 + 0.1(−θ2 − 8)2

10
− 20

g2(θ) =
(−θ + 7)2 + 0.1(−θ2 − 8)2

10
− 20

We perform minimization starting from five initial points:
[−8.5, 7.5], [0.0, 0.0], [9.0, 9.0], [−7.5,−0.5], [9,−1.0]. We
use Adam [1] optimizer with learning rate 10−3 and optimize
for 35k iterations. We demonstrate that our method is able
to converge to the optimums with varying pre-defined task
weights in Fig. 2. For this purpose we explore a number of
task convex combinations, such that L0 = αL1+(1−α)L2

D. Implementation details
CITYSCAPES three-task. Following MGDA-UB training
setup [6], we train PSPNet [9] model for 100 epochs using
Adam optimizer with learning rate 10−4. Train batch size is
set to 8. Images from training set are resized into 512× 256
resolution. We augment training set using random rotation
and horizontal flips. The performance is averaged across 3
random initializations.
CITYSCAPES two-task. We follow CAGrad [2] training
setup and train MTAN [4] model. Semantic labels are
groupped into 7 classes. Batch size is set to 8, learning rate
of Adam optimizer is set to 10−4. Models are trained for
200 epochs and learning rate is halved after 100 epochs. The
performance is averaged over last 10 epochs and 3 random
seeds.



Figure 2. Comparison of MTL optimization methods on synthetic two-task benchmark [2, 5]. We explore convergence of various methods
with varying pre-defined task weights. Methods that guarantee only Pareto-front convergence (such as IMTL [3] and NashMTL [5])
fail to achieve global optimum (defined by ⋆) and converge to an arbitrary Pareto-front solution with unknown task balance. Unlike
previous methods, our Aligned-MTL approach respects pre-defined task weights and converges to the global optimum for all task weights
combinations and initialization points (•), except one extreme case. Moreover, our method provides stable and less noisy trajectories than
other methods.
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Figure 3. Empirical evaluation of a stability criterion. We plot a condition number, gradient magnitude similarity [8], minimal cosine between
gradient pairs (conflicts) and maximum gradient norm ratio, i.e. maxi ̸=j{∥gi∥/∥gj∥}, during training of PSPNet [6, 9] and MTAN [4] on
the NYUV2 benchmark. Unlike Cityscapes with three tasks (figure from the main paper), on NYUv2 gradients do not differ drastically in
magnitudes but tend to have more conflicts (the cosine between gradients are negative, except for PCGrad). These figures indicate a high
correlation between condition number, gradient norm ratios and gradient magnitude similarity. Our Aligned-MTL approach eliminates
dominance (κ = 1, r = 1, GMS = 1) and conflicts (mini ̸=j cos(gi, gj) = 0) by design.

PSPNet MTAN



NYUV2 three-task. [2, 4, 5] We train both PSPNet models
[6, 9] and MTAN [4] models in our training setup with the
same hyperparameters set. We use Adam [1] optimizer with
learning rate 10−4. Models are trained for 200 epochs and
batch size 2. Images from training set are randomly scaled
and cropped into 384× 288 resolution. The performance is
averaged across 3 random seeds.
Reinforcement learning. We follow CAGrad [2] and use the
implementation originally proposed and developed by [7].
The execution config was adapded from CAGrad [2]. The
global evaluation pipeline is similar to previous works [2, 5].
The performance is averaged over 10 random seeds.
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