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Anneal. LLFF [6] DTU [3] Real. Syn. 360◦ [7]
3-view 6-view 9-view 3-view 6-view 9-view 4-view 8-view

λC ✓ [4.0, 1e−3]

λD 1e−4 1e−5 1e−6 1e−3 1e−4 1e−5 1e−3 1e−4

λ̂C 1e−5 1e−6 1e−7 1e−4 1e−5 1e−6 1e−4 1e−5

Table A. Overview of our loss balancing weights. We apply a linear annealing strategy for λC to stabilize the training. We divide λD

and λ̂C by a factor of 10 as more input views are provided for training.

A. Implementation Details
A.1. Hyperparameters

Following RegNeRF [8], we adopt a scene space anneal-
ing during the early training stage, an exponential learn-
ing rate decay from 2e−3 to 2e−5, and 512 steps of warm
up [1] with a delay multiplier of 1e−2. For the Realistic
Synthetic 360◦ [7], we set the initial learning rate as 1e−3
and apply an exponential decay to 1e−5. The Adam [5] op-
timizer is used and the gradient clippings are applied by
value at 0.1 and norm at 0.1 in order. We train our MixNeRF
for 500 pixel epochs with 4096 batch size on 2 NVIDIA TI-
TAN RTX, and the training time is measured on the same
hardware. For the balancing hyperparameters for our loss
terms, we anneal λC from 4.0 to 1e−3 over the first 512 it-
erations, while setting λD and λ̂C as different values by the
datasets. Tab. A shows the overview of balancing terms by
the datasets and the number of input views.

A.2. Architecture

Our MixNeRF is based on the architecture of mip-
NeRF [1]. As illustrated in Fig. A, our MixNeRF addition-
ally outputs the scale parameters β using softplus activation
and the ray depths µd for our mixture model. In practice,
we estimate the unnormalized ray directions µ̃d ∈ RN×3,
where N indicates the number of samples, and we use its
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Figure A. MixNeRF Network Architecture. The architecture of
MixNeRF is implemented based upon the mip-NeRF [1]. It addi-
tionally outputs the scale parameter β using softplus activation and
the ray depths µd = ∥µ̃d∥2, which are denoted in red. b indicates
a bottleneck vector.

Euclidean norm µd = ∥µ̃d∥2 as the estimated ray depths
for the training stability.

B. Experimental Details

B.1. Datasets

We evaluate MixNeRF on the different standard bench-
marks: LLFF [6], DTU [3], and Realistic Synthetic
360◦ [7].

LLFF: It contains realistic forward-facing scenes and is
generally used as an out-of-domain test set for pre-training
methods. Following the protocol of [7], every 8-th image is
used as a held-out test set and input views are chosen evenly
from the remaining images. We report the results under the
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Figure B. Comparison with baseline by the number of input
views. Our MixNeRF requires up to about 60% fewer input views
than mip-NeRF to achieve comparable performance, and outper-
forms mip-NeRF consistently even when more input views are
used for training. Since the reduced test set is used for the ex-
periment following [8], the results can be slightly different from
the main table.

scenarios of 3, 6, and 9 input views following [10].

DTU: It consists of images containing objects placed on a
white table with a black background. We follow the exper-
imental protocol of [10] and conduct experiments on their
designated 15 scenes. As with the LLFF dataset, we conduct
the experiments under the scenarios of 3, 6, and 9-view.

Realistic Synthetic 360◦: It consists of 8 inward-facing
synthetic scenes with different viewpoints, each containing
400 images. Following previous works [2, 4], we conduct
the experiments for the scenarios of 4 and 8 views. For a fair
comparison with other regularization methods, we sample
the first 4 and 8 images from the training set for the scenario
of 4 and 8 input views, respectively, for all models and use
the 200 test set images for evaluation. Note that the images
of the training set are arranged randomly in the first place,
and we do not choose the training input views carefully for
improving the performance.

B.2. Evaluation Metrics

We adopt a set of evaluation metrics including the mean
of PSNR, structural similarity index (SSIM) [9], and LPIPS
perceptual metric [11]. Additionally, we report its geometric
average [1]: MSE = 10−PSNR/10,

√
1− SSIM, and LPIPS.

Following [8], we adopt masked metrics to avoid back-
ground bias for DTU.

C. Data Efficiency Experiment

As demonstrated in Fig. B, we observe that our MixN-
eRF achieves superior data efficiency to the vanilla mip-
NeRF. Our MixNeRF requires up to about 60% fewer input

views to mip-NeRF to achieve comparable results. More-
over, ours outperforms mip-NeRF consistently even when
more than 9 input views are provided. It indicates that our
proposed mixture modeling strategy is effective in general
scenarios as well as the sparse input setting.

D. Additional Qualitative Results
We demonstrate the additional qualitative comparisons

in Fig. C, Fig. D, and Fig. E. Moreover, we show the addi-
tional qualitative results of our MixNeRF in Fig. F, Fig. G,
and Fig. H.

E. Limitations and Future Work
Our MixNeRF achieves the state-of-the-art performance

without any extra training resources, e.g. additional infer-
ence for pre-generated rays from unseen viewpoints, ex-
ternal modules for providing supplemental supervisory sig-
nals, or so on. However, it still shows a few degenerate parts
in the rendered images under the very sparse scenario as few
as 3-view, due to the disturbance from the non-objects, e.g.
a background or a table, especially on the DTU dataset. To
eliminate the artifacts more effectively, developing an algo-
rithm for classifying the pixels into an object or non-object
can be a promising future work.

F. Potential Negative Societal Impact
Our method is able to synthesize a photo-realistic image

from novel view from the limited training resources. Al-
though it provides much benefits for practical applications
where the dense training resources are hard to collect, there
exists a possibility of negative consequences with malicious
intents, e.g. a misleading content made with an intent to ei-
ther conceal or show some specific views. Therefore, the
effort to prevent the malicious usage should be made, e.g.
strictly checking on the permission to use sensitive data,
deep fake detection, and so on.
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Figure C. Additional qualitative comparisons on LLFF.
mip-NeRF [1] PixelNeRF [10] RegNeRF [8] MixNeRF (Ours) Ground Truth

(a) 3-view

(b) 6-view

(c) 9-view

Figure D. Additional qualitative comparisons on DTU.
mip-NeRF [1] DietNeRF [2] InfoNeRF [4] RegNeRF [8] MixNeRF (Ours) Ground Truth

(a) 4-view

(b) 8-view

Figure E. Additional qualitative comparisons on Realistic Synthetic 360◦.



(a) 3-view

(b) 6-view

(c) 9-view

Figure F. Additional qualitative results of our MixNeRF on LLFF.



(a) 3-view

(b) 6-view

(c) 9-view

Figure G. Additional qualitative results of our MixNeRF on DTU.



(a) 4-view

(b) 8-view

Figure H. Additional qualitative results of our MixNeRF on Realistic Synthetic 360◦.
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