
HaLP: Hallucinating Latent Positives for Skeleton-based Self-Supervised
Learning of Actions

Supplemental Material

Anshul Shah1 Aniket Roy1* Ketul Shah1* Shlok Mishra2

David Jacobs2,3 Anoop Cherian4 Rama Chellappa1
1Johns Hopkins University 2University of Maryland, College Park 3Meta 4MERL
{ashah95, aroy28, kshah33, rchella4}@jhu.edu {shlokm, dwj}@umd.edu cherian@merl.com

In this Supplementary material, we provide additional
empirical studies, analyses, and details. We summarily list
below the key sections.

1. Results on semi-supervised learning (Sec. A)

2. Additional ablation studies and analyses (Sec. B)

3. Results with multi-modal ensembles (Sec. C)

4. HaLP for Graph Representation Learning (Sec. D)

5. HaLP with AimCLR (Sec. E)

6. Implementation details (Sec. F)

A. Semi-supervised learning
In this experiment, we attach an MLP to the pre-trained

backbone and finetune the MLP with labels on x% of the
training data. We follow the same setting as prior work and
report results at 1%, 5%, 10%, and 20% data. In Table 1, we
see that HaLP outperforms the single modality baseline and
prior state-of-the-art with comparable training showing that
our representations can be adapted to the target task with
little training data. HaLP with multi-modal training leads to
results competitive with state-of-the-art.

B. Ablation studies
B.1. Different filtering variants:

As we discuss in the main paper, after the generation step
we apply our Rank Filter (Main paper, Eq. (2) and Sec.
3.4) to filter out good positives for use with the loss. In this
section, we experiment with alternative filtering approaches
which can be used once the positives are generated. These
are as follows:

variant-1: zq⊤zHi ≥ zq
⊤zk

Generated positives should be closer to the query features

*Aniket Roy and Ketul Shah contributed equally

(zq) than the key features (zk).

variant-2: zk⊤zHi ≥ P⊤
selzk

Generated positive should be closer to the key than the se-
lected prototype.

In Table 2, we empirically compare the performance of
these choices. We see that while all of our filters lead to
improvements over the baseline, our proposed rank filter has
the best performance. For these experiments, we generate
100 positives per anchor. We also report the number of re-
tained positives after the filtering step. We see that since the
rank filter has a stricter rule than variant-2, more positives
get filtered out. The variant-1 is quite strict and retains 16
positives on average after the filtering step. These might be
easier positives which might explain smaller improvements
over the baseline.

B.2. Effect of changing µ:

In Table 3, we vary the value of µ in the loss function
(Main paper, Eq. (8)) and observe its effect on the linear
evaluation performance on the NTU60-xsub split. It is to be
noted that as mentioned in the main paper, we use µ = 0
for the first 200 epochs. We empirically notice that this led
to better performance (Appendix B.4). First, we note that
all of our approaches outperform the baseline (which has
µ = 0 throughout). We observe that the performance steadily
improves as µ is increased. For ease of experimentation, we
set µ = 1 for all of our experiments. 1

B.3. How many positives to generate:

This work proposes an efficient solution to hallucinate
positives in the latent space. We can easily scale up the
number of positives generated using our approach. In
Table 4, we tabulate the performance by varying the number
of positives. We see that using 100 positives has the best

1Note that one could also set µ/τ as a constant to be tuned but we refrain
from doing so for making comparisons to the original MoCo loss easier.

1

Table 1. Results on NTU-60 in semi-supervised learning setup. Following CMD [6] we select a fraction of data and use that labelled data to
fine-tune the network. We achieve consistent performance improvement over the other baselines for single-modality training. Using HaLP
with CMD, gives improvements on NTU-60 x-sub and competetive performance on NTU-60 x-view. Results for AimCLR [3] were obtained
using official models.

Method
NTU-60

x-view x-sub

(1%) (5%) (10%) (20%) (1%) (5%) (10%) (20%)

Additional training modalities or encoders
ISC [8] 38.1 65.7 72.5 78.2 35.7 59.6 65.9 70.8
CrosSCLR-B [4] 49.8 70.6 77.0 81.9 48.6 67.7 72.4 76.1
CMD [4] 53.0 75.3 80.2 84.3 50.6 71.0 75.4 78.7
HaLP+CMD 53.0 75.3 80.4 84.6 52.6 71.4 76.0 79.2
Training using only joint
LongT GAN [10] - - - - 35.2 - 62.0 -
MS2L [5] - - - - 33.1 - 65.1 -
ASSL [7] - 63.6 69.8 74.7 - 57.3 64.3 68.0
AimCLR [3]† 47.2 - 74.6 - 45.7 - 71.4 -
HaLP-Baseline 45.4 69.0 75.2 81.0 42.6 64.3 70.0 74.7
HaLP 48.7 71.5 77.1 82.4 46.6 66.9 72.6 76.1

Table 2. Different filtering approaches. We empirically evaluate the
efficacy of various filtering approaches (defined in Appendix B.1).
We see that while each of the approach leads to an improvement
over the baseline, our rank filter outperforms the other proposed
alternatives.

Method Gfiltered (/100) NTU-60 x-sub

Baseline - 78.0
Rank filter 91 79.7
variant-1 16 79.5
variant-2 100 79.6

Table 3. Effect of µ on linear evaluation performance. Recall that µ
weighs the contribution of the HaLP loss compared to the standard
contrastive loss. We see that increasing µ improves performance
which saturates at higher values.

µ NTU-60 x-sub

0 (baseline) 78.0
0.5 78.8
1.0 79.7
1.5 79.9
2.0 80.0

performance. As discussed in Sec. 3, our approximation
could generate positives that might not satisfy the constraint
in Eq. (2). Thus we pass all the generated positives through
the PosFilter() before applying the loss. When using

Table 4. Effect of # positives on linear evaluation performance.
We empirically see that generating 100 positives shows the best
performance.

Positives NTU-60 x-sub

0 (baseline) 77.96
1 79.59
5 79.63
10 79.50
50 79.56
100 79.71
150 79.43

100 positives, we observe that ∼ 91% positives are retained
after the filtering step. We notice that other values of #
positives also outperform the baseline, which shows the
efficacy of our approach.

B.4. Changing when the HaLP loss is used:

For all experiments in the main paper, we set µ = 0 for
the first 200 epochs and use a constant µ = 1 for the rest. In
Table 5, we vary at which epoch µ is set to 1. We see that
setting µ = 1 at 200 epochs leads to the best results. Note
that the generation of positives is a function of the anchor
and the prototypes. We hypothesize that using generated
positives too early might be sub-optimal due to noisy early
representations while using it too late might not give the

Table 5. In this expeirment, we vary when to start generating new
positives. We notice that setting µ = 1 after 200 epochs gives
the maximum improvement in performance. Note that all variants
outperform the baseline.

µ = 1 at X epochs NTU-60 x-sub

50 79.6
100 79.6
200 79.7
300 78.7
400 78.3
µ = 0 (baseline) 78.0

Table 6. Effect of varying the number of Queue elements used to
extract prototypes

Prototypes (N) → 256 512 1024 2048 3072

NTU-60 x-sub 79.7 79.5 79.4 79.5 79.7

model enough training signal to significantly improve the
representations.

B.5. Effect of topK

Note that following the prior works [6,8], we use a mem-
ory queue of size 16384. Using the entire queue to obtain
prototypes has two issues. First, this can increase the time to
cluster. Secondly, note that the queue is obtained by append-
ing the current keys in a first-in-first-out fashion. The use of
very old (stale) keys can lead to sub-optimal representations
since the model might have changed significantly. Thus we
proposed to use only the most recent elements of the queue
to obtain prototypes. In Table 6, we observe that using 256
most recent queue elements has the best performance.

B.6. Analyses of the generated positives

Evolution of similarities: In Fig. 1, we plot the similarity of
zk and zHi to the query zq for the last 200 epochs of training.
In Fig. 2, we plot the corresponding similarities to the queue
(negatives). We see that the curves for real and hallucinated
positives start with a larger gap but closely follow each
other for the later part of training. We also notice that the
mean similarities of positives are slightly higher for the real
positives compared to the hallucinated ones. This verifies
that our approach generates hard positives which lead to
improved training. As expected, the anchor and positives are
pulled closer together while the anchor and negatives are
pushed farther away as training progresses.
Similarity of positives to prototypes: In Fig. 3, we plot
the similarities of various positives to the prototypes. First,
sim(zk, P) (blue curve) represents the similarity of the orig-
inal key to each of the prototypes. The key idea in our work
is to generate positives that share the same closest prototype

Figure 1. Mean similarity to query (zq)

Figure 2. Mean similarity to Queue (negatives)

Figure 3. Similarity to prototype. We plot the similarity of the zk
and three generated positives to the prototypes. Two of the positives
(green curves) share the same closest prototype as zk (blue curve).
These are the good positives which are used to compute the loss
while the third positive (red curve) has a different closest prototype
and is filtered out by the rank filter.

as the key zk. We observe that the generated positives, ie
positive 1 and positive 2 (green curves) satisfy the constraint
above and add diversity to the generated positives while
staying close to the original. We call these good positives.
Different from these, a bad positive (red curve) significantly
alters the similarities to each prototype and has a different
closest prototype. This generated positive will get filtered
out using our rank filter (Main paper, Sec. 3.4).

B.7. HaLP w/o memory bank

Most recent approaches (CMD, AimCLR, CrossSCLR,
ISC) using contrastive learning use a memory queue due to

Table 7. Comparison with ensemble training. In this experiment,
linear evaluation uses a late ensemble of various modalties. We see
that HaLP+CMD outperforms the multi-modal CMD [6] approach.

Method NTU-60 NTU-120 PKU-II

x-sub x-view x-sub x-set x-sub

3s-CrosSCLR [4] 77.8 83.4 67.9 66.7 21.2
3s-AimCLR [3] 78.9 83.8 68.2 68.8 39.5
3s-CrosSCLR-B [4] 82.1 89.2 71.6 73.4 51.0
3s-CMD [6] 84.1 90.9 74.7 76.1 52.6
3s-HaLP 85.1 91.0 75.5 76.8 53.4

its effectiveness. We can use HaLP without a memory queue
by clustering the key features from the current batch or use
the key features directly as cluster centers. We implement
a Baseline w/o momentum using the former and evaluate
the effectiveness of HaLP loss over it. We see that HaLP is
beneficial (kNN NTU60-xsub: 58.9 → 64.2). Note that our
approach also helps GraphCL (Appendix D) which does not
use momentum queue either.

C. Multi-modal ensemble
Following prior work, we perform test-time ensemble of

the 3 modalities : joint, motion, and bone. In Table 7, we see
that our approach leads to improvements over the baseline.

D. HaLP for Graph Representation Learning
As a future work, we want to apply our work to behavior

recognition in infants for early diagnosis of Autism Spectrum
Disorder. We are particularly interested in skeleton-based
action recognition since skeletons are grounded on people
in videos, are less sensitive to scene and object biases and
have minimal privacy concerns. These advantages of skele-
ton data make them beneficial for our eventual target task.
Self-supervised learning on skeletons has received less atten-
tion due to difficulties in crafting geometrically consistent
data augmentations. In Table 8, we apply our approach over
GraphCL and see improvements over the baseline showing
the general nature of our approach.

Table 8. HaLP applied to Graph Representation Learning. We see
that our approach of hallucinating positives also helps learn better
encoders for general graphs. We use our plug-and-play module over
GraphCL [9]

NCI-1 PROTEINS DD MUTAG

GraphCL 77.87± 0.41 74.39± 0.45 78.62± 0.40 86.80± 1.3
+HaLP 78.88± 0.41 74.65± 0.70 79.20± 0.60 89.35± 1.2

E. HaLP with AimCLR [3]
To show the plug-and-play nature of our approach, we add

our module to AimCLR [3], a recent Skeleton-SSL pipeline.

We observe that adding HaLP is beneficial. The performance
improves from 74.34 → 75.24 on NTU-60 x-sub showing
the efficacy of our approach.

F. Implementation details
We use the same pre-training protocol as ISC [8] and

CMD [6]. We use Geomstats [1] for k-Means clustering
on the hypersphere with tolerance of 1E-3 and initial step
size of 1.0. We use λ = 0.8 for all experiments. Wandb [2]
was used for experiment tracking. Following are the key
implementation details:

• Epochs : 450 and 1000 epochs for NTU and PKU re-
spectively.

• Learning rate : 0.01, drop to 0.001 at 350 and 800
epochs for NTU and PKU respectively.

• Memory queue size : 16384

• Batch size : 64

• Number of positives generated : 100

• Number of prototypes : 20 for NTU-60 and PKU and
40 for NTU-120.

• We use µ = 0 from 0-200 epochs. For NTU-60 and
PKU, µ is set to 1 at 200 epochs, while it is set to 2 for
NTU-120.

• Most recent elements used for clustering : 256

• Prototypes are updated every 5 steps.

References
[1] Geomstats https://geomstats.github.io/. 4
[2] Lukas Biewald. Experiment tracking with weights and biases,

2020. Software available from wandb.com. 4
[3] Tianyu Guo, Hong Liu, Zhan Chen, Mengyuan Liu, Tao Wang,

and Runwei Ding. Contrastive learning from extremely aug-
mented skeleton sequences for self-supervised action recogni-
tion. In AAAI, 2022. 2, 4

[4] Linguo Li, Minsi Wang, Bingbing Ni, Hang Wang, Jiancheng
Yang, and Wenjun Zhang. 3d human action representation
learning via cross-view consistency pursuit. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4741–4750, 2021. 2, 4

[5] Lilang Lin, Sijie Song, Wenhan Yang, and Jiaying Liu. Ms2l:
Multi-task self-supervised learning for skeleton based action
recognition. Proceedings of the 28th ACM International
Conference on Multimedia, 2020. 2

[6] Yunyao Mao, Wengang Zhou, Zhenbo Lu, Jiajun Deng, and
Houqiang Li. Cmd: Self-supervised 3d action representation
learning with cross-modal mutual distillation. arXiv preprint
arXiv:2208.12448, 2022. 2, 3, 4

[7] Chenyang Si, Xuecheng Nie, Wei Wang, Liang Wang, Tie-
niu Tan, and Jiashi Feng. Adversarial self-supervised
learning for semi-supervised 3d action recognition. ArXiv,
abs/2007.05934, 2020. 2

[8] Fida Mohammad Thoker, Hazel Doughty, and Cees GM
Snoek. Skeleton-contrastive 3d action representation learning.
In Proceedings of the 29th ACM International Conference on
Multimedia, pages 1655–1663, 2021. 2, 3, 4

[9] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. Graph contrastive learn-
ing with augmentations. Advances in neural information
processing systems, 33:5812–5823, 2020. 4

[10] Nenggan Zheng, Jun Wen, Risheng Liu, Liangqu Long, Jian-
hua Dai, and Zhefeng Gong. Unsupervised representation
learning with long-term dynamics for skeleton based action
recognition. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 32, 2018. 2

	. Semi-supervised learning
	. Ablation studies
	. Different filtering variants:
	. Effect of changing :
	. How many positives to generate:
	. Changing when the HaLP loss is used:
	. Effect of topK
	. Analyses of the generated positives
	. HaLP w/o memory bank

	. Multi-modal ensemble
	. HaLP for Graph Representation Learning
	. HaLP with AimCLR Guo2022ContrastiveLF
	. Implementation details

