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This Supplementary Material provides additional details
about network training and the camera system used in our
paper. We also add more experimental results that are not
included in the main paper due to limited space.

In Section A, we introduce our sparse multi-view cam-
era system and the captured video sequences. Then in Sec-
tion B, we provide more implementation details of our ap-
proach. In Section C, we present additional ablation study
and more results of our method. Please see our Supplemen-
tal Video for more visualization.

A. Dataset and Camera System

In our experiment, we apply our method to two sparse-
view settings: 1) a front-view imaging system consisting
of 4 static RGB cameras that are distributed in front of the
dynamic objects, and 2) a circular imaging system which
includes 12 static RGB cameras surrounding the dynamic
objects.

A.l. Front-view imaging system

Our front-view imaging system includes 4 static RGB
cameras which are fixed at the corners of the LookingGlass
monitor [1]. Each camera can capture images at 30fps with
aresolution of 1024 x 1024. The cameras are synchronized
and well-calibrated. To capture testing views for quanti-
tative evaluation, we add two cameras in the center of the
LookingGlass monitor. Using this system, we collect sev-
eral video sequences capturing various human poses, ges-
tures, expression, and objects interaction. We select 100
consecutive frames from each video sequence to build the
training and evaluation dataset. To achieve holographic dis-
play on the LooKingGlass monitor, we render a dense 3D
light field with 45 novel views along the horizontal center
line at the middle of the monitor.

A.2. Circular Imaging System

Our circular imaging camera system contains 12 static
RGB cameras which are installed on the ring cage. The

camera we used is the same as the cameras in the front-
view imaging system. We capture a dancing actor wearing
a gauze dress for qualitative presentations.

A.3. Segmentation

Since we focus on the dynamic objects in the scene,
we adopt BackGroundMattingV2 [3] to segment the fore-
ground objects in the images for our dataset.

B. More Implementation Details

For our 4D tensor decomposition, we define the 4D Plane
module which contains 18 feature planes. Nine of them
are low-resolution planes and the others are high-resolution
planes. Each low-resolution feature plane has 32 channels
and their resolution is 128 x 128. Each high-resolution fea-
ture plane has 16 channels and their resolution is 512 x 512.
For 3D tensor decomposition, we define the 3D Plane mod-
ule with 6 feature planes. Three feature planes are low-
resolution (128 x 128) and have 32 channels. The other 3
feature planes are high-resolution (512 x 512) and have 16
channels.

In the multi-view setting, our geometry MLP E; has 3
layers and all layers have 256 hidden dimensions except for
the first layer. The input of the first layer has 486 dimen-
sions, where (32 + 16) x 9 dimensions are queried from
feature planes, 3 + 3 x 14 dimensions are the positional
encoding of (z,y, z) and 1 + 1 x 8 dimensions are the po-
sitional encoding of ¢. The color MLP E. has 3 layers. The
input of the first layer has 283 dimensions, where 256 di-
mensions are the output of geometry MLP and 3+ 3 x 8 are
the positional encoding of view direction. The second layer
has 256 hidden dimensions and the final layer outputs the
3-dimensions vector for the RGB values.

Similarly, in the monocular setting, the flow MLP E
has 3 layers and all layers have 256 hidden dimensions ex-
cept for the first layer. The input of the first layer has 342
dimensions, where 32 x 9 dimensions are queried from fea-
ture planes, 3 4+ 3 x 14 dimensions are the positional encod-
ing of (x,y, z), and 1 4+ 1 x 8 dimensions are the positional



Figure Al. Coarse-to-fine detail improvements on geometry nor-
mal and novel rendering (coarse normal, fine normal, coarse ren-
dering, fine rendering from left to right).
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Figure A2. The rendering results under different numbers of input
views.

Table Al. Quantitative comparisons of training efficiency. Here
5k and 40k are the number of iterations.

Sequencel-thz (PSNR) Lego (PSNR)
Method sk 40k Sk 40k
D-NeRF [1] 1933 BT 1947 2042
TiNeuVox [2] | 21.56 2.72 2357  24.84
Neus-T [5] 19.07 241 ] -
Ours 2341 27.05 20.16  26.89

encoding of t. The geometry MLP E,; has 3 layers and the
last three layers have 256 hidden dimensions. The input of
the first layer has 189 dimensions, where (32 4 16) x 3 are
queried from feature planes and 3 + 3 x 14 dimensions are
the positional encoding of (z, y, z). For color rendering, We
adopt the same color MLP that we used in the multi-view
setting.

For fair comparisons, we adopt the same learning rate
and batch size for our method and existing methods. In
the monocular setting, we set the batch size to 512 and the
learning rate to be — 4. We also decay the learning rate by
0.005 after every 10k steps. In the multi-view setting, we
adopt the same learning rate setting and the training batch
size is 1024. For training loss, we set A, to 1.0, A, to 0.2
and )\, to 0.01.

C. Additional Experiment

C.1. Coarse-to-fine strategy

We qualitatively ablate the coarse-to-fine strategy in our
method. As shown in Fig. Al, the geometry and rendering
results are coarse and smooth at the coarse level. At the fine
level, the learned feature planes focus more on details and

Figure A3. Training results on the sequence with different number
of frames (30, 60, 100, 200 from left to right).

Comparisons on Sequence-thz dataset.
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Figure A4. The curves of training loss.

produce high-fidelity rendering results.

C.2. Number of views

We ablate our method using different numbers of views
as input. The results are shown in Fig. A2. Our method
can achieve photo-realistic rendering even with only 2 in-
put views, which indicates the robustness and generaliza-
tion ability of our method.

C.3. Time of video.

We qualitatively ablate the ability of our method by train-
ing with different numbers of temporal frames. We train
our method on the “thumbsup” multi-view sequence with
30, 60, 100, and 200 frames. We keep the same training
iterations (100k), and the novel view rendering results are
shown in Fig. A3.

C.4. Training efficiency.

We compare the training efficiency of our method with
existing methods including NeRF-T [4], D-NeRF [4],
TiNeuVox [2] and Neus-T. In the experiment, we compare
PSNR values changing with different number of training it-
erations on both a monocular synthetic dataset (Lego) and
a multi-view dataset (Sequencel-thz). For fair comparison,
we also fix the batch size of the sampling rays and keep the
same learning rate. As shown in Tab. Al, our 4D decom-
position is the most efficient method that achieve the best



trade-off between complexity and quality. The rendering
quality can be much higher given with sufficient training
iterations. The curves of training loss for several methods
are additionally plotted in Fig. A4, which also demonstrates
TensordD’s most efficient convergence.
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