
A. Proof of Theorem 1
According to [13,42,46,64], we have the following lem-

mas.

Lemma 1. The differential entropy H(x) of random vari-
able x ⇠ N (0,�) is

H(x) / log(�2
). (6)

Lemma 2. For any random variable x, its differential en-
tropy H(x) is bounded by its Gaussian entropy upper bound

H(x) c log[�2
(x)], (7)

where c > 0 is a universal constant, �(x) is the standard
deviation of x.

Lemma 3. For N random variables {x1, · · ·xi, · · ·xN},
the laws of expectation and variance of sum of random vari-
ables are

E(
NX

1

xi) =

NX

1

E(xi), (8)

�2
(

NX

1

xi) =

NX

1

�2
(xi). (9)

The laws of expectation and variance of product of random
variables are

E(
NY

1

xi) =

NY

1

E(xi), (10)

and

�2
(xixj) = �2

(xi)�
2
(xj) + �2

(xi)E2
(xj)+

�2
(xj)E2

(xi).
(11)

Suppose that in an L-layer MLP f(·), the i-th layer has
wi input channels and wi+1 output channels. The trainable
weights in i-th layer is denoted by Mi 2 Rwi+1⇥wi . For
simplicity, we assume that each element xj

1 in x1 and each
element Mj,k

i in Mi follow the standard normal distribu-
tion, i.e.

xj
1 ⇠ N (0, 1), (12)

Mj,k
i ⇠ N (0, 1). (13)

According to Eqs. (8) to (12), in i-th layer, the output
xi+1 and the input xi are connected by xi+1 = Mixi. The

expectation of j-th element in xi+1 is

E(xj
i+1) = E(

wiX

k=1

Mjk
i xk

i)

=

wiX

k=1

E(Mjk
i xk

i)

=

wiX

k=1

E(Mjk
i)E(xk

i)

= 0.

(14)

According to Eqs. (8) to (14), the variance of j-th ele-
ment in xi+1 is

�2
(xj

i+1) = �2
(

wiX

k=1

Mjk
i xk

i)

=

wiX

k=1

�2
(Mjk

i xk
i)

=

wiX

k=1

{�2
(Mjk

i)�2
(xk

i) + �2
(Mjk

i)E(xk
i)

+ �2
(xk

i)E(M
jk
i)}

=

wiX

k=1

�2
(xk

i)

= wi�
2
(xk

i).
(15)

With the variances propagating in networks and xj
1 ⇠

N (0, 1) in Eq. 12, the variance of j-th element in L-th layer
is

�2
(xj

L) =

LY

i=1

wi (16)

According to Eq. 6, the entropy of each element xj
L of

L-th MLP is

H(xj
L) / log(

LY

i=1

wi),

=

LX

i=1

log(wi).

(17)

After considering the width of the output feature vector,
the normalized Gaussian entropy upper bound of the L-th
feature map of MLP f(·) is

Hf = wL+1

LX

i=1

log(wi). (18)

Figure 4. DeepMAD v.s. SOTA ViT and CNN models on ImageNet-1K. ⇢ = 0.5 for all DeepMAD models. All DeepMAD models except
DeepMAD-29M⇤ is trained with 224 resolution. x-axis is the Params, the smaller the better. y-axis is the accuracy, the larger the better.

B. Proof of Proposition 1
Assume there is an MLP model fA(·) that has L-layers

with different width wi, and the entropy of the MLP model
is H . To define the “average width” of fA(·), we compare
fA(·) to a new MLP fB(·). fB(·) also has L-layers but with
all layers sharing the same width w̄. Suppose that the two
networks have the same entropy for each output neuron, that
is,

Hfa =

LX

i=1

log(wi), Hfb = L · log(w̄). (19)

When the above equality holds true(i.e., Hfa = Hfb),
we can have the following equation,

LX

i=1

log(wi) = L · log(w̄). (20)

Therefore, we define w̄ as the “average width” of fA(·).
Then we derive the definition of average width of MLP in
Proposition 1 as following,

w̄ = exp

1

L

LX

i=1

logwi

!
. (21)

C. SOTA DeepMAD Models
We provide more SOTA DeepMAD models in Fig-

ure 4. Especially, Deep-MAD achieves better performance

on small and base level. DeepMAD-50M can achieve
83.9% top-1 accuracy, which is even better than ConvNeXt-
Base [41] with nearly only half of its scale. DeepMAD-
89M achieves 84.0% top-1 accuracy at the “base” scale,
outperforming ConvNeXt-Base and Swin-Base [40], and
achieves similar accuracy with SLaK-Base [39] with less
computation cost and smaller model size. On “tiny” scale,
DeepMAD-29M also achieves 82.8% top-1 accuracy under
4.5G FLOPs and 29M Params. It is 1.5% higher than Swin-
Tiny with the same scale, and is 2.2x reduction in Params
and 3.3x reduction in FLOPs compared to T2T-24 [78] with
0.2% higher accuracy. Therefore, we can find that building
networks only with convolutional blocks can achieve bet-
ter performance than those networks built with vision trans-
former blocks, which shows the potentiality of the convolu-
tional blocks.

D. DeepMAD Optimized for GPU Inference
Throughput

We optimize GPU inference throughput using Deep-
MAD. To measure the throughput, we use float32 preci-
sion (FP32) and increase the batch size for each model until
no more images can be loaded in one mini-batch inference.
The throughput is tested on NVIDIA V100 GPU with 16
GB Memory. ResNet building block is used as our design
space.

To align with the throughput of ResNet-50 and Swin-
Tiny on GPU, we first use DeepMAD to design networks of
different Params and FLOPs. Then we test throughput for
all models. Among these models, we choose two models
labeled as DeepMAD-R50-GPU and DeepMAD-ST-GPU
such that the two models are aligned with ResNet-50 and
Swin-Tiny respectively. The top-1 accuracy on ImageNet-
1k are reported in Table 9.

Method Res. #Param. Throughput FLOPs Acc.(%)

ResNet-50 224 26 M 1245 25.6 G 77.4
DeepMAD-R50-GPU 224 19 M 1171 3.0 G 80.0

Swin-Tiny 224 29 M 750 4.5 G 81.3
DeepMAD-ST-GPU 224 40 M 767 6.0 G 81.7

Table 9. DeepMAD models optimized for throughput on GPU.
‘Res’: image resolution.

E. Other Experiments Results
We fine-tune the effectiveness ⇢ in Table 10. Comparing

to the results in the main text, we can achieve better accu-
racy when ⇢ is fine-tuned.

Method ⇢ Res. #Param. FLOPs Acc.(%)

ResNet-18 [21] 0.01 224 11.7 M 1.8 G 70.9
DeepMAD-R18 0.3 224 11.7 M 1.8 G 77.7
DeepMAD-R18 0.15 224 11.7 M 1.8 G 78.2
ResNet-34 [21] 0.02 224 21.8 M 3.6 G 74.4
DeepMAD-R34 0.3 224 21.8 M 3.6 G 79.7
DeepMAD-R34 0.15 224 21.8 M 3.6 G 80.3

MobileNet-V2 [23] 0.9 224 3.5 M 320 M 72.0
DeepMAD-MB 0.5 224 3.5 M 320 M 72.3
DeepMAD-MB 1 224 3.5 M 320 M 72.9

Table 10. Fine-tuned ⇢ in DeepMAD. ‘Res’: image resolution.

F. Complexity Comparison with NAS Methods
DeepMAD is also compared with classical NAS works

in complexity as well as accuracy on ImageNet-1K. The
classical NAS methods [6, 38, 49, 75, 82] need to train a
considerable number of networks and evaluate them the in
searching phase, which is time-consuming and computing-
consuming. DeepMAD need not train any model in the
search phase, and it just needs to solve the MP problem
to obtain optimized network architectures in a few minutes.
As shown in Table 11, DeepMAD takes only a few min-
utes to search for a network that can achieve better accu-
racy (76.1%) than other NAS methods. It should be noted
that Table 11 only consider the search time cost and does
not consider the training time cost. However, DeepMAD
only needs one training process to produce a high-accuracy

model with trained weights, while these baseline methods
train multiple times.

Method #Param. FLOPs Acc.(%) Search Cost
(GPU hours)

NASNet-A [82] 5.3 M 564 M 74.0 48,000
ProxylessNAS [6] 5.8 M 595 M 76.0 200

PNAS [38] 5.1 M 588 M 74.2 5,400
SNAS [75] 4.3 M 522 M 72.7 36

AmoebaNet-A [49] 5.1 M 555 M 74.5 75,600

DeepMAD 5.3 M 390 M 76.1 < 1

(CPU hour)

Table 11. Complexity and accuracy comparison with NAS Meth-
ods on ImageNet-1K.

G. Discussion on Architectures

Figure 5 shows as effectiveness ⇢ increases, the depth of
networks increases while the width decreases. As discussed
in Section 5.3, the model accuracy does not always increase
with ⇢. When ⇢ is small, model accuracy increases as depth
increases and width decreases. When ⇢ is large, the oppo-
site phenomenon occurs. The existence of an optimal effec-
tiveness means the existence of optimal depth and width of
networks to reach the best accuracy.

The architectures of DeepMAD models are released
along with the source codes. Compared to ResNet families,
DeepMAD suggests deeper and thinner structures. The fi-
nal stage of DeepMAD networks is also deeper. The width
expansion after each downsampling layer is around 1.2-1.5,
which smaller than 2 in ResNets.

Figure 5. Effectiveness ⇢ v.s. the depth and width of each gen-
erated network on CIFAR-100. The architectures shown in this
figure are same as those shown in Figure 2. The depth increases
with ⇢ monotonically while the width decreases at the same time.

H. Experiment Settings
The detailed training hyper-parameters for CIFAR-100

and ImageNet-1K datasets are reported in Table 12.

Hyper-parameter CIFAR-100 ImageNet-1K

warm-up epoch 5 20
cool-down epoch 0 10
epochs 1440 480
optimizer SGD SGD
batchnorm momentum 0.01 0.01
weight decay 5e-4 5e-5
nesterov True True
lr scheduler cosine cosine
label smoothing 0.1 0.1
mix up 0.2 0.8
cut mix 0 1.0
mixup switch prob 0.5 0.5
crop pct 0.875 0.95
reprob 0.5 0.2
auto augmentation auto [14] rand-m9-mstd0.5
lr 0.2 0.8
batch size 512 2048
amp False True

Table 12. Experiment Settings.

