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In this Supplementary, we provide extensive experiments
for evaluating our DiGA framework as well as additional
results obtained from our trained models of DiGA and its
variants.

A. Symmetric Knowledge Distillation against
Adversarial Training

(a) Target inputs (d) Ground-truth(b) Adversarial training (c) Our distillation

Figure 1. Visual examples of the blind alignment issue in adver-
sarial warm-up training and the comparison of model predictions
between adversarial training and our proposed knowledge dis-
tillation technique given the same target inputs.

Strategy Adv. [17] Distil. Adv. [17]+CrDoMix Distil.+CrDoMix Adv. [17]+Distil.+CrDoMix

mIoU 45.2 48.9 47.3 51.1 51.3

Table 1. Warp-up model comparison between adversarial train-
ing and our knowledge distillation technique w/ and w/o Cr-
DoMix, as well as combining all configurations on GTA5-to-
Cityscapes adaptation.

We emphasize and further illustrate that our proposed
pixel-wise symmetric knowledge distillation can be a good
replacement of adversarial training for warming up UDA
segmentation. Without the awareness of the class label of
the target data, adversarial learning tries to align target fea-
tures to their most closely distributed source features but
ignores the class-wise relationship. This feature alignment
can only ensure that the overall distribution of the features
from the source and target domains are indistinguishable,
which deviates from the ultimate goal of domain adaptive
semantic segmentation, i.e., the feature of one class from the
target domain is aligned to the same class from the source
domain. Therefore, as presented in Fig. 1(b), the model
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Figure 2. The training pipeline of our image domain translator
for data augmentation. For clarity, the dual translation path from
target to source and back to target domain is omitted.

often gets confused when a prediction should be made be-
tween two similar classes, which turn out to be erroneous in
many cases. However, as observed in Fig. 1(b), our knowl-
edge distillation technique can effectively alleviate this is-
sue, since the distillation training only involves source do-
main data and is class-aware.

In Table 1, we quantitatively compare these two warm-
up strategies and find out that our pixel-wise symmetric dis-
tillation technique is an optimal strategy for warm-up stage
training. Out of curiosity, we conduct an additional exper-
iment on GTA5-to-Cityscapes adaptation benchmark to see
whether combining our distillation and adversarial training
for warm-up can bring a further improvement for the warm-
up stage. However, we do not witness a substantial increase,
i.e., the mIoU goes up from 51.1 to 51.3.

B. Training of Image Domain Translator

In our work, we take a pretrained image domain trans-
lator to help create CrDoMix for data augmentation. As
depicted in Fig.2, the training of our image domain transla-
tor follows the pipeline of CycleGAN [28]. The input xs is
passed to Ts2t, constrained by an adversarial loss Ladv

s and
a self-reconstruction loss Lrec

s , producing xs2t that is sent
to a target-to-source translator for cyclic reconstruction of
the input xs controlled by Lcyc

s . Likewise, the dual trans-
lation training step is performed for target input xt, but for
simplicity this part is omitted from Fig.2.
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(a)  w/o (b) (c)  w/ 

Figure 3. Visual comparison of image domain translator trained
w/ and w/o semantic edge reconstruction loss. Red arrows point
out the major differences.

However, according to [3], in certain occasions, Cycle-
GAN tends to ‘hide’ information about source images into
the translated images in a hardly perceptible way, which
is less meaningful to be considered for data augmentation.
Hence, considering that the label maps are available for
the virtual source domain, we also make use of which to
compute a semantic edge reconstruction loss when input
comes from the source domain. Specifically, we utilize the
source domain label map ys to get a semantic edge mask
yedges , which is pixelwisely multiplied with xs to filter out
the non-edge pixels. An element-wise L1-metric semantic
edge reconstruction loss Ledge

s is then applied to xs2t. The
motivation is simply to take advantage of the available ys
and preserve the semantic edges during translation to avoid
the ‘steganographical effects’ in the resulting outputs. In
Fig.3, we visualize and compare the outputs of the domain
translators trained w/ and w/o Ledge

s . Following the red ar-
rows, we can observe in Fig.3(b) that some objects in certain
regions of xs2t get faded without having Ledge

s as a con-
straint. Reconstructing the semantic edges, however, brings
these regions salient again in Fig.3(c). As a quantitative
verification, we also utilize Ts2t as image domain transla-
tor to train our DiGA warm-up model, witnessing a per-
formance drop by 0.2 mIoU for GTA5-to-Cityscapes adap-
tation and 0.4 mIoU for Synthia-to-Cityscapes adaptation,
respectively. With the pretrained and fixed image domain
translator Ts2t, we can perform our CrDoMix data augmen-
tation for UDA. Additional examples are provided in Fig.4.
We can see that the mixture of x̃s and xs2t based on Cr-
DoMix can simultaneously integrate diverse cross-domain
effects on every single xcdm without breaking the geometric
structure that comes from the original input xs. Moreover,
the inter-domain changes are not fixed to a specific region
but randomly appear across the whole image.

Moreover, as Fig. 5 shows, in certain occasions some
regions of x̃s might appear darker because of the effect
from random combination of basic augmentation opera-

Phase warm-up stage ST stage

λdistil
s 0.25 0.5 1.0 0.0 0.25 0.5

mIoU 50.8 51.1 50.4 62.1 62.7 62.4

Table 2. The effect of λdistil
s for training DiGA. (GTA5-to-

Cityscapes)

α 0.0 0.25 0.5 0.75 1.0

mIoU 49.3 50.9 51.1 50.8 50.8

Table 3. Warm-up performance ablation using different α val-
ues in Ldistil

s . (GTA5-to-Cityscapes)

tions, which means the pixel values are similar and close
to zero. In this case, it makes less sense to train the network
on these regions. However, our CrDoMix makes the learn-
ing of these unobtrusive regions more interesting by making
the selected parts more salient while having target-like ap-
pearance (See xs2t in Fig. 5).

C. Feature Discriminability Analysis
In Fig.6, we compare t-SNE [18] visualizations of the

source-only model, our warm-up model and ST stage model
regarding their class-wise feature distribution based on
Cityscapes validation set. We can observe from left to right
that the feature distribution changes conform with the im-
provements of mIoU in Table ??. As the model gets bet-
ter adaptable, the feature clusters also demonstrate a clearer
momentum of separation class-wisely.

D. Additional Ablative Analysis
In Table 2, we study the impact of re-weighting Ldistil

s

in DiGA traning pipeline. For warm-up stage training, we
set λdistil

s = 0.5 to emphasize the knowledge distillation
loss, achieving 51.1 mIoU on target validation set. On the
other hand, reducing λdistil

s to 0.25 makes the effect of
Ldistil
s a bit insufficient (drops to 50.8 mIoU) but increasing

it to 1.0 will overweigh the source domain supervised loss
Lseg
s , leading to a drop to 50.4 mIoU. In terms of ST stage,

however, as pseudo-labels for target domain are produced
on-the-fly, the learning should be prioritized on pseudo-
supervision instead of knowledge distillation. Therefore,
we reduce λdistil

s from 0.5 to 0.25, achieving the best per-
formance for ST stage (62.7 mIoU). As also observed in
Table 2, setting λdistil

s to 0.0 means training the ST stage
without knowledge distillation, which experiences a perfor-
mance drop from 62.7 to 62.1 mIoU.

In Table 3, the impact of the scaling factor in Ldistil
s is

studied. We observe that, even though the symmetric path
in our knowledge distillation is beneficial, without which
the warm-up mIoU becomes 49.3, yet we need to point out
that the choice of α value can influence the warm-up train-
ing to certain degree. When α is too large (e.g., set to 1 or



(a) (b) (c) random mask(d) (e)

Figure 4. Additional visual examples for creating CrDoMix data augmentation on virtual source domain.

Figure 5. Each row from left to right: examples of xs, x̃s and xcdm. White dashed boxes indicate the major differences from a visual
perspective.

(a) source-only (c) ST stage(b) warm-up stage

Figure 6. Visualization of feature distribution on Cityscapes val-
idation set for each stage based on t-SNE [18] map.

0.75), the symmetric distillation path can balance the super-
vision signal from ys in a more dominant manner, leading
to a slight performance drop from 51.1 to 50.8. Hence, an
optimal empirical choice of α is 0.5. (Note that for Synthia-
to-Cityscapes benchmark, however, this value is set to 0.25
acccording to our experience)

E. Discussion of DiGA Variants

We train DiGA variants for warm-up stage as well as ST
stage by replacing specific model components with other
methods to better understand the effectiveness of them.
What if CrDoMix is performed in Cutmix [24] fashion
instead of class-wise exchange?
Variant (1) in Table 4 shows that the warm-up stage mIoU
drops from 51.1 to 50.7 after replacing our strategy in Cr-
DoMix with Cutmix [24]. An explanation for this result is
that performing CrDoMix in Cutmix fashion makes it pos-
sible to insert target domain style onto xcdm, but is limited
within a pre-defined square box. However, by class-wise
combination according to the source label map ys, the inter-



Phase warm-up stage ST stage

Variant (1)CrDoMix−→(Cutmix) (2)Ldistil
s −→(Lcdm

seg ) (3)Λ−→(xs) (4)Λ−→(xcdm) (5)Λ−→(xt)

mIoU 50.7 45.8 60.4 61.3 62.5

Table 4. Model performances of training DiGA based on other variants.
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Source-only - 83.2 35.7 81.3 29.3 20.8 27.4 26.9 19.4 81.9 32.2 76.6 51.8 15.0 71.9 22.5 28.6 4.0 18.5 0.0 38.3
BDL [13] CVPR’19 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
CAG [26] NeurIPS’19 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2

CrCDA [8] ECCV’20 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6
FADA [19] ECCV’20 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1

Seg-Uncer [27] IJCV’21 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
DACS [16] WACV’21 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
IAST [15] ECCV’20 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2

UncerDA [22] ICCV’21 90.5 38.7 86.5 41.1 32.9 40.5 48.2 42.1 86.5 36.8 84.2 64.5 38.1 87.2 34.8 50.4 0.2 41.8 54.6 52.6
CDGA [10] AAAI’21 91.1 52.8 84.6 32.0 27.1 33.8 38.4 40.3 84.6 42.8 85.0 64.2 36.5 87.3 44.4 51.0 0.0 37.3 44.9 51.5

MetaCorrection [4] CVPR’21 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1
SAC [1] CVPR’21 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8

ProDA [25] CVPR’21 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.3 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0.0 45.4 53.8 53.7
Undoing [14] CVPR’22 89.1 34.3 83.6 38.3 27.5 28.9 34.7 17.6 84.2 41.0 85.1 57.8 33.7 85.1 38.5 41.3 30.7 31.1 48.0 49.0

CPSL [12] CVPR’22 91.7 52.9 83.6 43.0 32.3 43.7 51.3 42.8 85.4 37.6 81.1 69.5 30.0 88.1 44.1 59.9 24.9 47.2 48.4 55.7
ProCA [9] ECCV’22 91.9 48.4 87.3 41.5 31.8 41.9 47.9 36.7 86.5 42.3 84.7 68.4 43.1 88.1 39.6 48.8 40.6 43.6 56.9 56.3

CorDA [21] ICCV’21 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
BCL [11] ECCV’22 93.5 60.2 88.1 31.1 37.0 41.9 54.7 37.8 89.9 45.5 89.9 72.7 38.2 90.7 34.3 53.2 4.4 47.2 58.5 57.1

DiGA (Ours) CVPR’23 95.6 67.4 89.8 51.6 38.1 52.0 59.0 51.5 86.4 34.5 87.7 75.6 48.8 92.5 66.5 63.8 19.7 49.6 61.6 62.7
ProDA‡ [25] CVPR’21 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

Undoing+ProDA‡ [14] CVPR’22 92.9 52.7 87.2 39.4 41.3 43.9 55.0 52.9 89.3 48.2 91.2 71.4 36.0 90.2 67.9 59.8 0.0 48.5 59.3 59.3
CPSL‡ [12] CVPR’22 92.3 59.9 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.5 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8

DiGA‡(Ours,ResNet) CVPR’23 95.6 66.5 89.6 55.7 36.5 50.8 59.0 56.9 86.4 35.8 84.4 76.0 48.8 93.2 70.0 66.0 18.2 55.8 65.6 63.7
DiGA (Ours,HRNet) CVPR’23 95.2 65.2 90.7 59.0 57.1 57.8 63.3 54.8 90.0 42.4 89.0 76.8 49.6 91.6 66.8 69.8 59.7 24.0 51.9 66.1

DAFormer [6] CVPR’22 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
DiGA (Ours + DAFormer) CVPR’23 95.7 70.4 89.8 54.8 47.8 51.3 57.8 63.9 90.3 48.8 91.8 73.1 46.6 92.6 78.5 81.3 74.8 57.3 63.2 70.0

HRDA [7] ECCV’22 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
DiGA (Ours + HRDA) CVPR’23 97.0 78.6 91.3 60.8 56.7 56.5 64.4 69.9 91.5 50.8 93.7 79.2 55.2 93.7 78.3 86.9 77.8 63.7 65.8 74.3

Table 5. GTA5-to-Cityscapes adaptation results. We compare our model performance with state-of-the-art methods. For each configura-
tion, bold stands for best and underline for second-best. ‡ means an extra distillation stage on target domain using SimCLRv2 backbone.

domain changes are not fixed to a specific region but ran-
domly appear across the whole image. This makes the data
augmentation more diverse, thus creating a more meaning-
ful augmented image.
What if CrDoMix data augmentation is directly adopted
for source supervision instead of knowledge distillation?
This experiment is conducted as variant (2) in Table 4,
which means that we utilize xcdm to compute a segmen-
tation loss Lcdm

seg in the same way as we treat xs. Therefore,
in this case, knowledge distillation losses are replaced by
a supervised cross-entropy segmentation loss, and we see
that the warm-up model performance degrades from 51.1 to
45.8 mIoU. The reason for this decrease is that Ts2t does not
ensure a perfect mapping from source to target domain, oth-
erwise the domain gap can be purely closed by image trans-
lation. Therefore, applying direct supervision using hard
source labels on xcdm might cause the network to overfit
on the target-like textures that are faked by Ts2t. However,
by distilling soft assignments p†s to pcdm, we only expect

the network to learn a momentum to predict on xcdm in a
similar way close to xs. Thus, the soft distillation signal
is not as strong as a hard supervision signal, avoiding the
overfitting effect to a certain degree. On the other hand, as
discussed in the main paper, our distillation loss prevents
the student from learning unwanted source labels, reducing
the noise introduced by them. Hence, our CrDoMix-based
knowledge distillation demonstrates superiority over direct
supervision on xcdm.
What if xs (or Xs) instead of xcdm (or Xcdm) and xt (or
Xs) is adopted for computing and updating class cen-
troids Λ? What about xcdm or xt alone?
This experiment is conducted as variant (4), (5) and (3)
in Table 4, showing that using xs instead of x̃cdm to com-
pute Λ results in a mIoU decrease from 62.7 to 60.4 in ST
stage. Similarly, the ST stage result decreases to 61.3 (using
xcdm) and 62.3 (using xt) mIoU respectively. This result is
self-explanatory since xcdm contains target-like character-
istics at pixel-level, which builds up a smoother transition
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Source-only - 65.1 25.6 77.1 10.4 0.0 28.5 0.0 10.1 76.0 71.7 52.2 18.6 69.4 20.8 15.2 28.2 35.6 40.8
BDL [13] CVPR’19 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
CAG [26] NeurIPS’19 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 51.5
CrCDA [8] ECCV’20 86.2 44.9 79.5 8.3 0.7 27.8 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 42.9 50.0
FADA [19] ECCV’20 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5

Seg-Uncer [27] IJCV’21 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9
DACS [16] WACV’21 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8
IAST [15] ECCV’20 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0

UncerDA [22] ICCV’21 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 54.9
CDGA [10] AAAI’21 90.7 49.5 84.5 - - - 33.6 38.9 84.6 84.6 59.8 33.3 80.8 51.5 37.6 45.9 - 54.1

MetaCorrection [4] CVPR’21 92.6 52.7 81.3 8.9 2.4 28.1 13.0 7.3 83.5 85.0 60.1 19.7 84.8 37.2 21.5 43.9 45.1 52.5
SAC [1] CVPR’21 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53.0 52.6 59.3

ProDA [25] CVPR’21 87.1 44.0 83.2 26.9 0.0 42.0 45.8 34.2 86.7 81.3 68.4 22.1 87.7 50.0 31.4 38.6 51.9 58.5
Undoing [14] CVPR’22 83.6 36.2 80.9 10.3 0.1 27.4 17.6 22.8 81.5 81.2 54.6 20.1 80.3 38.1 11.1 42.9 43.0 50.1

CPSL [12] CVPR’22 87.3 44.4 83.8 25.0 0.4 42.9 47.5 32.4 86.5 83.3 69.6 29.1 89.4 52.1 42.6 54.1 54.4 61.7
ProCA [9] ECCV’22 90.5 52.1 84.6 29.2 3.3 40.3 37.4 27.3 86.4 85.9 69.8 28.7 88.7 53.7 14.8 54.8 53.0 59.6

CorDA [21] ICCV’21 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 94.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 55.0 62.8
BCL [11] ECCV’22 83.8 42.2 85.3 16.4 5.7 43.1 48.3 30.2 89.3 92.1 68.2 43.1 89.7 47.2 42.2 54.2 55.6 62.9

DiGA (Ours,ResNet) CVPR’23 89.1 53.4 86.1 28.7 3.0 49.6 50.6 34.9 88.2 84.9 71.3 40.9 91.6 75.1 50.3 65.8 60.2 67.9
ProDA‡ [25] CVPR’21 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0

Undoing+ProDA‡ [14] CVPR’22 82.5 37.2 81.1 23.8 0.0 45.7 57.2 47.6 87.7 85.8 74.1 28.6 88.4 66.0 47.0 55.3 56.7 64.5
CPSL‡ [12] CVPR’22 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 88.5 79.0 32.0 90.6 49.4 50.8 59.8 57.9 65.3

DiGA ‡(Ours,ResNet) CVPR’23 89.2 53.4 86.1 33.0 2.5 49.8 54.0 37.5 88.3 88.5 72.5 43.3 92.0 77.7 51.5 67.2 61.8 69.4

DiGA (Ours,HRNet) CVPR’23 90.6 56.3 87.4 38.8 6.4 57.7 59.3 50.4 87.9 86.4 76.1 47.9 89.0 54.2 47.2 69.1 62.8 69.4

DAFormer [6] CVPR’22 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 60.9 67.4
DiGA (Ours + DAFormer) CVPR’23 85.2 41.4 88.2 42.6 7.5 52.1 57.5 47.7 87.8 90.8 75.0 50.8 87.8 58.0 58.5 63.0 62.1 68.6

HRDA [7] ECCV’22 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 65.8 72.4
DiGA (Ours + HRDA) CVPR’23 88.5 49.9 90.1 51.4 6.6 55.3 64.8 62.7 88.2 93.5 78.6 51.8 89.5 62.2 61.0 65.8 66.2 72.8

Table 6. Synthia-to-Cityscapes adaptation results. mIoU, mIoU⋆ refer to 16-class and 13-class experiment settings, respectively. For
each configuration, bold stands for best and underline for second-best. ‡ means an extra distillation stage using SimCLRv2 backbone.

from source to target domain. Updating together with xt

contributes to the computation of more domain-robust class
centroids, which is beneficial when it comes to the step of
feature-centroid based voting for target pseudo-supervision.
Therefore, we prefer to adopt xcdm together with xt rather
than xs along to obtain the feature class centroids in ST
stage.
What if ŷwarm

t is updated at each iteration during the
self-training stage?
In our paper, we update ŷwarm

t only once at epoch 50 (half
of the training). But there are more options for updating
ŷwarm
t . Here we report the performances (mIoU) of three

updating strategies: (1) 60.5 (no update); (2) 56.4 (update
each iteration); (3) 62.7 (ours). This shows that updating
ŷwarm
t is useful but tricky. When ŷwarm

t is updated at each
iteration, we observed that the validation accuracy would
first go up, but then fall forever due to the instability when
ŷwarm
t and ŷfeatt both change. Although our self-training

strategy shows nice potential in label selection, but there is
still no guarantee that every pseudo-label is correct. If there
is a wrong pseudo-label selected, this wrong classification
will be mistakenly ‘encouraged’ in following iterations and
get further amplified during training. Therefore, we choose
to keep ŷwarm

t relatively static and ŷfeatt dynamic. We be-

lieve further strategy for updating ŷwarm
t can be an interest-

ing future direction.
When distilling to ps, why do we use p̃†s instead of p†s?
As mentioned in our paper, our symmetric knowledge dis-
tillation enables bidirectional alignment and between the
input source image and its augmented view. In the addi-
tional symmetric distillation path, ps is supervised by ys

while being balanced by the more smoother p̃†s. In this
way, ps is pulled to a distribution that is close to p̃†s (aug-
mented output) while still being encouraged to make cor-
rect semantic predictions because of the supervision sig-
nal from ys. In order to enforce the student to learn to
produce domain-invariant outputs, it is actually helpful to
inject out-of-distribution or target-aware perturbations to
ps. Compared with p†s, p̃†s carries out-of-distribution and
target-aware property, preventing the soft label to be source-
specific and thus improves domain generalization. We ex-
perimented to use p†s but found that the warm-up mIoU
drops by 0.4.

F. Quantitative Comparison with SOTA
We provide more detailed quantitative comparison of

DiGA with state-of-the-art methods for domain adaptive se-
mantic segmentation. From Table 5 and Table 6, we ob-
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Figure 7. Additional examples showing our bilateral-consensus pseudo-supervision procedure.

serve that our approach outperforms other methods by con-
siderable margins in terms of mIoU when trained on the
same network architecture, i.e., ResNet-101 [5] back-
bone plus Deeplab-V2 [2] for segmentation. Like-
wise, we also reproduced an extra knowledge distillation
stage using SimCLRv2 backbone and observe that our
previous results get improved from 62.7 to 63.7 mIoU
for GTA5-to-Cityscapes adaptation and from 60.2 to 61.8
mIoU for Synthia-to-Cityscapes adaptation. To test the ar-
chitectural generalizability of our method, we also train on
OCRNet [23] with HRNet-W48 [20] backbone and obtain
higher mIoU scores on both benchmarks. For some specific
classes, the HRNet results do not outperform the ResNet
ones. This is owing to the randomness in data sampling,
for example, if some long-tail classes are rarely seen by the
network during training, the worst case is that the network
is much less accurate when predicting those classes. We
retrain our framework twice and can observe that the class-
wise IoU varies a lot even though the mIoU is close. This
also explains why model assembling works to further im-
prove the performance for deep neural networks.

G. Additional Qualitative Results of DiGA
In this section we provide additional examples show the

pseudo-labelling procedure and results of our proposed BP
strategy (Fig. 7), and more model inference examples of

DiGA on the Cityscapes validation set (Fig. 8).
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