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Figure 1. Illustration of the three coordinate systems.

1. Distortion-Aware Projection

Definition. Following [2, 5], we denote a unit sphere as S
with its surface as S2. For each point s (where s = (ϕ, θ) ∈
S2 and ϕ ∈ [−π

2 ,
π
2 ], θ ∈ [−π, π]) on the spherical sur-

face, it is uniquely defined. Define the virtue tangent plane
as Π and it is located at sΠ = (ϕΠ , θΠ ). Denote the co-
ordinates of a point on Π as x ∈ R2, Π0 represents that
the virtue tangent plane located as s = (0, 0). Define the
sampling locations as s(j,k), where j, k ∈ {−1, 0, 1}. De-
note the equirectangular image as I with the points on it as
p = (m,n). We set the coordinates of the geometric center
of the image to sp = (0, 0) (Fig. 1 left).
Projection Between Spherical Surface And The Virtue
Tangent Planes. We utilize the step sizes of the equirectan-
gular image at the equator (denoted as ∆θ,∆ϕ) to sample
the points. ∀ s = (ϕ, θ) ∈ S2, the coordinates of the nine
points to sample can be written as:

s(0,0) = (ϕ, θ)
s(±1,0) = (ϕ±∆ϕ, θ)
s(0,±1) = (ϕ, θ ±∆θ)

s(±1,±1) = (ϕ±∆ϕ, θ ±∆θ)

(1)

And the coordinates x(j,k) of the nine points to sample on
the virtue tangent plane located at s can be calculated via

the gnomonic projection:

x(0,0) = (ϕ, θ)
x(±1,0) = (ϕ± tan∆θ, θ)
x(0,±1) = (ϕ, θ ± tan∆ϕ)

x(±1,±1) = (ϕ± tan∆θ, θ ± sec∆θ tan∆ϕ)

(2)

The projection between the tangent plane x(j,k) and the
points s on the spherical surface S2 can be calculated via
the inverse gnomonic projection:{

ϕ(0, 0) = sin−1(cos v sinϕ+ y sin v cosϕ
ρ )

θ(0, 0) = θ + tan−1( x sin v
ρ cosϕ cos v−y sinϕ sin v )

(3)

where x = ϕ, y = θ, ρ =
√

x2 + y2 and v = tan−1 ρ.{
ϕ(±1, 0) = sin−1(cos v sin(ϕ ± tan∆θ) +

y sin v cos(ϕ±tan∆θ)
ρ

)

θ(±1, 0) = θ + tan−1( x sin v
ρ cos(ϕ±tan∆θ) cos v−y sin(ϕ±tan∆θ) sin v

)

(4)
where x = ϕ ± tan∆θ, y = θ, ρ =

√
x2 + y2 and v =

tan−1 ρ.{
ϕ(0,±1) = sin−1(cos v sinϕ +

y sin v cosϕ
ρ

)

θ(0,±1) = θ ± tan∆ϕ + tan−1( x sin v
ρ cosϕ cos v−y sinϕ sin v

)
(5)

where x = ϕ, y = θ ± tan∆ϕ, ρ =
√
x2 + y2 and v =

tan−1 ρ.
ϕ(±1, 0) = sin−1(cos v sin(ϕ ± tan∆θ)

+
y sin v cos(ϕ±tan∆θ)

ρ
)

θ(±1, 0) = θ ± sec∆θ tan∆ϕ

+ tan−1( x sin v
ρ cos(ϕ±tan∆θ) cos v−y sin(ϕ±tan∆θ) sin v

)

(6)

where x = ϕ ± tan∆θ, y = θ ± sec∆θ tan∆ϕ, ρ =√
x2 + y2 and v = tan−1 ρ.

Projection Between Spherical Surface And The
Equirectangular Image. ∀ p = (m,n), its related
spherical point s = (ϕ, θ) can be calculated as:

θ = 2π
(m− W

2 )

W
(7)

ϕ = π(
n− H

2

H
) (8)
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Figure 2. Qualitative results on Stanford 2D-3D [1].
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Figure 3. Qualitative results on PanoContext [8].

where H/W represents the height/width of the equirectan-
gular image. Hence, we can calculate the coordinates of
the nine most relevant points on the equirectangular images.
And the computed coordinates are those prepared points lo-
cations mentioned in the submission.

2. Channel-Wise Graph Attention
The dependencies among different channels are gener-

ally unconfined. It inevitably leads to information redun-
dancy among channels. In the ideal case, we prefer that
each channel can capture distinct aspects of information. To
this end, we propose a discriminative channels generation
mechanism via graph convolution to enforce each channel
to concentrate on different parts of information. Specifi-
cally, for channel feature matrix X ∈ RC×Ws̃ with C chan-
nels, let each channel Xi ∈ R1×Ws̃ be represented as a node
in the channel-wise graph, the formula of the discriminative
channels generation mechanism can be represented as:

X ′ = LXW = (I−A)XW (9)

where L and A are the symmetric normalized Laplacian
matrix and normalized adjacency matrix of the channel-
wise graph, and I and W are the identity matrix and learn-
able weights, respectively. Instead of the common form of
graph convolution AXW used for image-wise or object-
wise graphs in previous works, it can be seen from Eq.(9)
that a node will subtract the information from the neighbor

nodes rather than aggregation. It encourages each channel
to retain as much information as possible that is different
from its neighbors.

As an important part of the generation of the discrimi-
native channels, channel-wise graph construction is strictly
determined by whether Eq.(9) can play its proper role. In
practice, a weighted channel-aware measure Sim(·) is used
to construct the channel-wise graph Ãij = Sim(Xi, Xj),
which is defined as:

Sim(Xi, Xj) = (XiWs)Ca(XjWs)
⊤ (10)

where Ws is a projection matrix, Ca = diag[ca] is a
weighted diagonal matrix, ca as the weight vector is derived
from X . There are many different options to get ca. With-
out loss of generality, we adopt the popular hybrid pool-
ing module to obtain Ca conveniently. Specifically, the se-
quence X⊤ ∈ RWs̃×C is first fed into one average pooling
and one max pooling, respectively. Then, the addition op-
eration is used to fuse the outputs of two branches as the
final weight vector ca ∈ RWs̃×1. Therefore, the normal-
ized channel-wise graph construction can be formulated as
follows:

A = D− 1
2 (XWs)Ca(XWs)

⊤D− 1
2 (11)

where D = diag[d1, d1, · · · , dn] is the degree matrix with
di =

∑N
j=0 Ãij . Finally, the formula of the discriminative
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Figure 4. Qualitative comparison with LGT-Net [4] and LED2-Net [7] on MatterportLayout [9].
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Figure 5. Qualitative comparison with LGT-Net [4] and LED2-Net [7] on ZInD [3].

channels generation mechanism can be rewritten as:

feat = (I−D− 1
2 (XWs)Ca(XWs)

⊤D− 1
2 )XW (12)

3. More Qualitative Results

We provide more qualitative results in this section.
Specifically, we exhibit our qualitative results on the two
cuboid datasets (while previous work [4] do not provide
them) in Fig. 2 and Fig. 3, respectively. Besides, we pro-
vide more qualitative results on the two general room layout
datasets (shown in Fig. 4 and Fig. 5). Similar to the submis-
sion, the boundaries of the room layout on a panorama are
shown on the left, and the floor plan is on the right. Ground
truth is best viewed in Blue lines, and the prediction in
Green. The predicted horizon depth, normal, and gradient

are visualized below each panorama, and the ground truth
is in the first row. We do not employ the post-processing
strategy for all the listed methods.

4. More features visualization
The features visualization results (on the right) and our

prediction results are shown (on the left) in Fig. 6. The
boundaries of the room layout on a panorama, as well as
the floor plane are exhibited in the figure. Ground truth is
best viewed in Blue lines, and the prediction in Green. The
predicted horizon depth, normal, and gradient are visualized
below each panorama. From the figure, we can observe that
the features without disentangling orthogonal planes show
ambiguous attention due to the confusing semantics. In con-
trast, our disentangled vertical plane features are more dis-
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Figure 6. More features visualization. To make the features best viewed, we resize these 1D feature sequences to a 2D representation via a
vertical bilinear interpolation operation.

Method GMac Param.(M) Time(ms) Fps
HorizonNet[6] 71.8 81.56 51 20
LED2-Net[7] 71.8 81.56 56 18
LGT-Net[4] 81.5 119.34 31 32

Ours 81.8 137.05 41 24

Table 1. Complexity comparison.

criminative and give more attention to the layout corners.
The procedure of disentangling orthogonal planes frees our
1D sequence of the vertical plane from the negative effect of
the indoor furniture (or illumination), yielding more effec-
tive attention to those layout-relevant locations rather than
those regions with rich texture.

5. Complexity
We exhibit the complexity comparison results of the

methods in Tab. 1. From the table, we can observe that even
though our method disentangles the compressed sequences
into two 1D representations, the parameters just increased
by 17M. In addition, compared with the solution [4] that we
strictly followed, the calculation complexity of our model
has hardly increased. Our inference time is slightly higher
than the LGT-Net’s [4] but still outperforms LED2-Net [7].
In conclusion, our approach does not do serious harm to
the computational complexity while yielding better perfor-
mance.

6. Overview
The contributions are summarized as follows:

• We propose to disentangle orthogonal planes to cap-
ture an explicit geometric cue for indoor 360° room
layout estimation, with a soft-flipping fusion strategy
to assist this procedure.

• We design a cross-scale distortion-aware assembling
mechanism to perceive distortion distribution as well
as integrate shallow geometric structures and deep se-
mantic features.

• On popular benchmarks, our solution outperforms
other SoTA schemes, especially on the metric of in-
tersection over the union of 3D room layouts.

We propose to disentangle orthogonal planes to capture
geometric cues in 3D space. Specially, we introduce a ver-
tical flip-fusion strategy to leverage the symmetry property
of indoor room layout. Besides, our experimental results
demonstrate that dealing with distortion, as well as integrat-
ing shallow and deep features, can enhance performance.
The code will be publicly available upon acceptance. We
hope our work can contribute to this field.
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