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In the supplementary materials, we provide more experi-
ments for the proposed Equiangular Basis Vectors (EBVs).

1. Relations between α, d and N

In Section 3.1 of the paper, we make the definition of the
proposed EBVs, where α ∈ [0, 1) represents the maximum
value of the absolute value of the cosine of the angle between
any two vectors, d denotes the dimension of each coordinate
vector while N denotes the number of the basis vectors.
Specifically, for the EBVs set W , each w ∈ Rd in W should
satisfies:

∀wi,wj ∈ W, i ̸= j, −α ≤ wi ·wj

∥wi∥ ∥wj∥
≤ α , (1)

where ∥·∥ denotes the Euclidean norm and card(W) = N .
According to Elad et al. [3], we have known that we can

construct a Grassmannian matrix if N satisfies:

N < min(d(d+ 1)/2, (N − d)(N − d+ 1)/2) , (2)

while the lower bound for α equals
√

N−d
d(N−1) . Therefore,

we could get a set W ′ (card(W ′) = N ) which satisfies:

∀wi,wj ∈ W ′, i ̸= j, 0 ≤ wi ·wj

∥wi∥ ∥wj∥
≤ α . (3)

However, if N does not satisfy Eq. (2) or the fixed α is
larger than the lower bound, we can not construct such a
Grassmannian matrix. Furthermore, we would like to ex-
plore the relations between α, d and N . Thus, we use the
bisection method to search for the maximum value of N
when given fixed α and d which satisfies Eq. (1) according
to Algorithm 1 in the paper. In Figure 1 in the supplemen-
tary materials, we draw the relationship curve between α,
d and N . Specifically, when fixed α and d, we calculate
a progressive upper bound for N . Additionally, it can be
easily proved that we can find n (2 ≤ n ≤ N) vectors which
satisfy Eq. (1) when given the same α and d.

2. Empirical evaluations on 100,000 classes
In this section, we conduct experiments in the case where

the number of categories reached 100,000.
*Corresponding author.
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Figure 1. Relations between α, d and N .

Table 1. Experiments on the dataset with 100,000 classes. “Params.”
denotes parameters need to be optimized. “Top-1 Acc” represents
Top-1 accuracy.

Method Optimizer EBVs Dim. Params. (M) Top-1 Acc (%)
FC SGD – 228.4 1.29
FC AdamW – 228.4 30.25

EBVs SGD 5000 33.8 29.99

Dataset and settings We collect images containing
100,000 categories with almost the same number of training
images as the ImageNet-1K dataset [2]. Specifically, we
construct a dataset with 100,000 categories, each category
contains 12 training images and 6 test images, i.e., a total of
1.2 million images in the training set and 600,000 images in
the test set. All these images and labels are collected from
the citizen science website iNaturalist1. We adopt ResNet-50
as the backbone and follow Setting A1 in the paper. The
hyper-parameters τ is set as 0.007 for our EBVs. All the
models are pretrained on the ImageNet-1K dataset.

Results According to Table 1, we can see that ResNet-50
ending with a 100,000-way fully connected layer could not
work when optimized with SGD [6]. The top-1 accuracy

1www.inaturalist.org
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Table 2. Top-1 accuracy of ResNet-32 on the long-tailed CIFAR-10 and CIFAR-100 datasets.

Dataset Long-tailed CIFAR-10 Long-tailed CIFAR-100
Imbalance ratio 100 50 10 100 50 10

FC 38.32 43.85 55.71 70.36 74.81 86.39
EBVs 40.41 44.68 57.82 73.31 78.97 87.9

Table 3. Comparisons of classification accuracy (%) on the iNatu-
ralist 2018 dataset.

Method Test size Top-1 Acc (%)

FC* 2242 61.7
FC 2242/2562 64.03 / 65.43

EBVs 2242/2562 65.00 / 67.12
* denotes the model is trained without TrivialAugment

and LR optimizations.

is only 1.29% after training for 105 epochs. When training
with the AdamW [5] optimizer, the top-1 accuracy turns out
to 30.25%. However, the 100,000-way fully connected layer
contains around 200M parameters which is too large and will
become huger if the number of categories continues to grow.
When training with our proposed EBVs, if the dimension
of each basis vector is set as 5,000, the final top-1 accuarcy
gains 29.99%, while the parameters to be optimized are only
33.8M, which are only around 1

7 parameters of previous
models.

3. Empirical evaluations on long-tailed image
classification

3.1. Datasets and settings

Long-tailed CIFAR-10 & CIFAR-100 Both CIFAR-10
and CIFAR-100 has 60,000 images of size 32 × 32 with
50,000 for training and 10,000 for validation. We choose
the long-tailed version of CIFAR-10 and CIFAR-100 [1],
which downsamples the training data class-wisely from the
original dataset by exponential decay functions. For fair
comparisons, imbalance factors we use in experiments are
10, 50 and 100.

iNaturalist 2018 iNaturalist 2018 [7] is a large-scale real-
world dataset with 437,513 images from 8,142 categories.
It naturally follows a severe long-tailed distribution with an
imbalance factor of 512. Besides the extreme imbalance, it
also faces the fine-grained problem [9]. In this paper, the of-
ficial splits of training and validation images are utilized for
fair comparisons. We utilize ResNet-50 [4] as the backbone.

Settings For long-tailed CIFAR-10 and CIFAR-100
datasets, we follow the data augmentation strategies pro-

posed in [4]: randomly crop a 32× 32 patch from the origi-
nal image or its horizontal flip with 4 pixels padded on each
side. we use ResNet-32 [4] as the backbone. SGD opti-
mizer with momentum of 0.9 and weight decay of 5× 10−4

is used for network optimization. We train all the models
for 200 epochs with batch size of 128. For the iNaturalist
2018 dataset, we utilize ResNet-50 [4] as the backbone, the
hyper-parameters τ is set as 0.02. We train the model by
following Setting A1 in the paper, the training epoch is set
as 200. The dimension of our proposed EBVs is set as 10,
100 and 8,142 for CIFAR-10, CIFAR-100 and iNaturalist
2018, respectively.

3.2. Results

We conduct extensive experiments on long-tailed CIFAR
datasets with three different imbalanced ratios: 10, 50 and
100. Table 2 reports the top-1 accuracy of models ending
with a general k-way fully cinnected layer and our proposed
EBVs. EBVs outperform the general FC baseline in all
the settings. In Table 3, we report the top-1 accuracy on
the iNaturalist 2018 dataset. EBVs also gain around 1%
improvement in all the settings.

Table 4. Ablation studies of the performance of stacked incremental
improvements on top of baseline of our proposed EBVs. w/o EBVs
denote models ending with a general fully connected classifier.
ResNet-50 baseline is under Setting A0 in the paper but with only
1-crop testing. “Top-1 Acc” denotes Top-1 accuracy while “Abs.
Diff.” denotes absolute difference. The test size for each image is
set as 2242 except “FixRes Mitigations”.

Top-1 Acc (%) Abs. Diff.
ResNet-50 Baseline 76.13 0.00

+ LR Optimizations w/o EBVs 76.49 0.36
+ TrivialAugment w/o EBVs 76.81 0.68

+ TrivialAugment 77.26 1.13
+ Random Erasing 77.55 1.42
+ Label Smoothing 77.61 1.48

+ Mixup 77.79 1.66
+ Cutmix 78.14 2.01

+ Long Training w/o EBVs 79.51 3.38
+ Long Training 79.73 3.60

+ FixRes Mitigations 80.90 4.77
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Figure 2. Representation structure of Swin-T. Left: Similarity between layers within Swin-T ending with fully connected layer with softmax.
Middle: Similarity between layers within Swin-T ending with EBVs. Only last few layers share minimal similarity with other layers. Right:
Similarity between layers across Swin-T ending with general fully connected layer with softmax and our proposed EBVs. Only last few
layers share minimal similarity with other layers.

4. Ablation studies on training techniques
In this section, we conduct ablation studies of the per-

formance of different training techniques in our proposed
EBVs. As training models are not a journey of monotoni-
cally increasing accuracies and the process involves a lot of
backtracking [8]. To quantify the effect of each optimization
in our proposed EBVs, we conduct related ablation studies
in Table 4. When the training crop size is fixed as 2242

and turns the inference resolution to 3202, with only 1-crop
testing, EBVs gains a final top-1 accuracy of 80.9% on the
ImageNet-1K dataset.

5. Do EBVs perform like FC?
In this section, we follow Section 5 of the paper and

pick Swin-T as the backbone. As shown in Figure 2 in
the supplementary materials, when adopting Swin-T as the
backbone, the phenomenon of models ending with EBVs in
the last few layers is similar to the performance in ResNet-
50. However, most of the other layers share high similarities
whether the model ends with a fully connected layer or
EBVs.
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