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Abstract

In this supplementary document, we first describe in details our proposed dataset and the processing behind it in Sec. 1.
Then, we discuss various implementation details including network architectures, evaluation metrics and conditional synthesis
details in Sec. 2. Next, we examine ablation of different loss terms, and evaluate stage 1 model’s performance. Finally, we
discuss baselines in more details in Sec. 5 and showcase mesh extraction visualization results in Sec. 6.

1. Dataset

We build the object-centric benchmark on top of the Waymo Open Dataset (WOD) [ 1] and our Longtail dataset. The Waymo
Open Dataset (WOD) is one of the largest and most diverse autonomous driving datasets among others [2—4], containing rich
geometric and semantic labels such as 3D bounding boxes and per-pixel instance masks. Specifically, the dataset includes
1,150 driving scenes captured mostly in downtown San Francisco and Phoenix, each consisting of 200 frames of multi-sensor
data. Each data frame includes 3D point clouds from LiDAR sensors and high-resolution images from five cameras (positioned
at Front, Front-Left, Front-Right, Side-Left, and Side-Right). The objects were captured in the wild and their images exhibit
large variations due to object interactions (e.g., heavy occlusion and distance to the robotic platform), sensor artifacts (e.g.,
motion blur and rolling shutter) and environmental factors (e.g., lighting and weather conditions).

To construct a benchmark for object-centric modeling, we propose a coarse-to-fine procedure to extract collections of
single-view 2D photographs by leveraging 3D object boxes, camera-LiDAR synchronization, and fine-grained 2D panoptic
labels. First, we leverage the 3D box annotations to exclude objects beyond certain distances to the surveying vehicle in
each data frame (e.g., 40m for pedestrians and 60m for vehicles, respectively). At a given frame, we project 3D point clouds
within each 3D bounding box to the most visible camera and extract the centering patch to build our single-view 2D image
collections. Furthermore, we train a Vip-Deeplab model [5] using the 2D panoptic segmentations on the labeled subset [6] and
create per-pixel pseudo-labels for each camera image on the entire WOD. This allows us to differentiate pixels belonging to
the object of interest, background, and occluder (e.g., standing pole in front of a person). We further exclude certain patches
where objects are heavily occluded using the 2D panoptic predictions. Even with the filtering criterion applied, we believe
that the resulting benchmark is still very challenging due to occlusions, intra-class variations (e.g., truck and sedan), partial
observations (e.g., we do not have full 360 degree observations of a single vehicle), and imperfect segmentation. Finally, we
use the sensor calibration information to compute ray directions for each 2D pixel, taking into account the camera rolling
shutter.

Our Longtail dataset contains LiDAR point clouds and camera images, along with 3D bounding box annotations. We obtain
the pseudo-labeled segmentations using the same 2D panoptic model pretrained on WOD. We apply the same coarse-to-fine
procedure to obtain the Longtail-Vehicle benchmark.

2. More Implementation Details

2.1. Network Architecture

All models use exponential moving average of weights.

Encoder 4. Our encoder contains three vision transformer blocks and three cross-attention blocks. The vision transformer
takes input images of resolution of 2562, and first map each patch into a 512 dimensional token. A CLS token is appended to
the list of image patch tokens. Then, the transformer blocks are used to process the image patch tokens. Each transformer
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Figure 1. Our object-centric benchmark.

block has 8 heads, an embedding dimension of 512 and a hidden dimension of 2048. For cross-attention blocks, we first
initialize tri-plane positional embedding of shape 16 x 16, each embedding is of 512 dimension. The tri-plane positional
embedding is passed through a fully-connected layer of 512 dimension. The processed tri-plane positional embedding is
then used a query input to the cross-attention transformer blocks, while the image patch tokens serve as key and value. Each
cross-attention transformer block has 8 heads, an embedding dimension of 512 and a hidden dimension of 2048. Finally, the
output of the cross-attention transformer blocks are passed through a fully-connected layer with Layer Normalization [7] and
tanh activation into 16 x 16 tokens of 32 dimension, which is the dimension of each entry in the codebook K.



Codebook K. Our discrete codebook contains 2048 entries with lookup dimension of 32, which means each entry is of
32-dimensional. Codebook are initialized using fan-in variance scaling, scale equals 1 and uniform distribution. Following
Yu et al. [8], we use ly-normalized codes, which means applying [ normalization on the encoded tri-plane latents e’ and
codebook entries in K.

Decoder GGy - Token Transformer. The token transformer contains 3 self-attention transformers blocks. A CLS token is
appended to the tri-plane latents. Positional encoding is used to represent 3D spatial locations. Each transformer block has
8 heads, an embedding dimension of 512 and a hidden dimension of 2048. Finally, the output of the transformer blocks
are passed through a fully-connected layer with Layer Normalization [7] and tanh activation into 16 x 16 tokens of 256
dimension (and an additional CLS token).

Decoder Gy - Style-based Generator. We first use a mapping network [9] to map the aforementioned CLS token into
intermediate latent space W. The mapping network contains § fully-connected layers of hidden dimension 512. The mapping
network outputs a vector w of 512 dimensional. Following Karras et al. [9], we use w for a style-based generator. For each
plane in our tri-plane representation (xy, xz, yz planes), we use a generator contains three up-sampling blocks with hidden
dimensions of 512, 256 and 128 respectively. Finally, the style-based generators output tri-plane feature maps with 32 feature
channels.

Decoder GGy - Volume Rendering. Our volume renderer is implemented as 2 fully-connected layers, similar to Chan et
al. [10]. The decoder takes as input the 32-dimensional aggregated feature vector from the style-based generator. For each
pixel, we query 40 points, with 24 uniformly sampled and 16 importance-sampled. We use MipNeRF [ 1] as our volume
rendering module. Volume rendering is performed at a resolution of 128 x 128.

Discriminator. We use a StyleGAN2 [9] discriminator with hidden dimensions 16, 32, 64, 128, 256. We use R1 regulariza-
tion with v = 1.

Stage-2 Modeling M,,. We follow a shallower verions of the network architecture and training set up introduced in [12].
We use 12 layers, 8 attention heads, 768 embedding dimensions and 3072 hidden dimensions. The model uses learnable
positional embedding, Layer Normalization, and truncated normal initialization (stddev= 0.02). We use the following training
hyperparameters: label smoothing=0.1, dropout rate=0.1, Adam optimizer [13] with 5; = 0.9 and 32 = 0.96. We use a cosine
masking schedule. During inference, token synthesis are performed in 10 steps.

2.2. Aligning Tri-plane to Object Scale
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Figure 2. Illustration of using uniform tri-plane versus using scale-aligned triplane.

Since vehicles can have drastically different scales in its x, y, z directions, using a naive uniform scale tri-plane to cover the
object leaves a lot of computation capacity under-utilized. As illustrated in the top row of Fig. 2, if we cover a normal sedan
using uniform size tri-plane, most of the entries in the tri-plane features correspond to empty space. The problem becomes
more severe for longer-tail instances of truck, bus efc., where the scale ratio among z, y, 2 become even more extreme.

To encourage a more efficient tri-plane features usage, we make tri-plane latents aligned to object scales during the
coordinate feature orthographic projection step. As illustrated in the bottom row of Fig. 2, when querying feature of coordinate
p € [0,1]° C R?, if we have object scale s, sy, 5., we simply scale p as p := —F—~ € [0, ] x [0, é] x [0, 5], and
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query tri-plane features using p. The orthographic projection follows the same tri-plane grid-sampling and aggregation as in
prior works [10, 14, 15].

In the basic GINA-3D pipeline without using scaled tri-plane features, the model learns to handle object scale implicitly. In
our scaled box model variations, the model leverages the object scale only in tri-plane feature orthographic projection step.
The model implicitly learns to produce feature maps that align with object scale. As illustrated in the main paper, such design
greatly improve model performance. We leave feeding object scale information explicit to the model as a future direction to
explore.

2.3. Evaluation Metrics

We discuss in details the metrics we have used for quantitative evaluations.

Image Quality. To evaluate the image quality, we employ two metrics Fréchet Inception Distance (FID) [16] and Mask
Floater-Over Union (Mask FOU) over 50K generated images. Fréchet Inception Distance (FID) [16] is commonly used to
evaluate the quality of 2D images. The generated images are encoded using a pretrained Inception v3 [17] model, and the last
pooling layer’s output was stored as the final encoding. The FID metric is computed as:

FID(Iy, 1,) = |[pg — .Ung + Tr[Eg + Xy — 2¢/8g - 5y (1)

where Tr denotes the trace operation, p4, 2, are the mean and covariance matrix of the generated images encodings, and
Ly, 2y are the mean and covariance matrix of the validation images encodings.

We additionally measure if the generated texture forms a single full object, which is implemented by checking if the
generated pixels span a connected region. We measure this by calculating percentage of pixels that are not connected. Since
all images from baselines and GINA-3D are generated using a white background, we measure pixels connected components
using the findContours function from OpenCV [18] to find connected components, and use contourArea to find the
largest connected component, which we denote C;. We then use the aggregated density (alpha) value to find the entire shape’s
projection on the image, which we denote S. Mask FOU is simply calculated mean over entire generated image set (as
percentage):
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Image Diversity. We want to evaluate the semantic diversity of the generated image, which we measure with Coverage
(COV) score and Minimum Matching Distance (MMD) [19] using pretrained CLIP [20] embeddings. Specifically, Coverage
(COV) score measures the fraction of images in the validation set that are matched to at least one of the images in the generated
set. Formally, it’s defined as:

[{argmin,e,, |[|CLIP(i) — CLIP(j)|3]j € I, }|

cov(I,, I,) = T
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Intuitively, COV uses CLIP embedding distance to perform nearest-neighbor matching for each generate image towards
validation set. It measures diversity by checking what percentage of validation set is being matched as a nearest neighbor.
However, COV is only one side of the story. A set of generated image can have a high COV score by having purely random
generated images that are randomly matched to validation set. This issue is alleviated by the incorporation of Minimum
Matching Distance (MMD), which measures if the nearest-neighbor matching yields high-quality matching pairs:

MMD(I,, I,,) = me”cup() CLIP(j)||3 4)
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Intuitively, MMD measures the average closest distance between images in the validation set and their corresponding nearest
neighbor in the training set. MMD correlates well with how faithful (with respect to the validation set) elements of generated
set are [19].

Geometry Quality. Due to a lack of 3D geometry ground-truth for in-the-wild data, we measure geometry quality using an
existing metric Consistency score from Or-El et al. [21], and a Mesh Floater-Over Union (Mesh FOU) which measures if
the geometry forms a single connected object. Consistency score measures if the implicit fields are evaluated at consistent



3D locations, which is an important characteristic for view-consistent renderings [21]. In practice, it measures depth map
consistency across viewpoints by back-projecting depth map to the 3D space. For each model, we normalize the object longest
edge to length of 10 for numeric clarity, and compare two depth maps at an angle difference of 45 degrees along the z-axis
(yaw). We calculate consistency across depth maps for all images in the generated set, denote as D:

Consistency(Dgy) = |D | Z CD(i, ot ) ®)
€Dy

where i, represents the depth map after rotating the view point by 45 degree along z-axis.

We additionally measure if each generated shape forms a single full object, which is measured by checking if the generated
mesh forms a single mesh. We measure this by calculating percentage of mesh surface area that is not connected. We use
surface area over volume because we observe that volume calculation is unstable with non-watertight meshes. For each
generated mesh S, we use split function from Trimesh [22] to find the largest connected component, which we denote C;.
Mesh FOU is simply calculated mean over entire generated mesh set M, (as percentages):
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Figure 3. Illustrations of aggregated point clouds.

Geometry Diversity. We use Coverage (COV) and Minimum Matching Distance (MMD) again for measuring diversity.
However, due to the lack of ground truth full 3D shape from in-the-wild data, our metric needs to be more carefully designed.
A source for accurate but partial geometry that we can obtain is by aggregating LiDAR point-cloud scans for a given instance
from different observations. We then uniformly subsample 2048 points from the aggregated point cloud. We show examples of
aggregated point clouds in Fig. 3. As shown in the figure, the aggregated point clouds are indicative of the underlying shapes,
but are incomplete. Chamfer distance, a common metric for shape similarity, calculates bi-directional nearest neighbors.
However, due to incompleteness, finding the nearest neighbors of the generated points in the partial point will only result
in noisy matches. Therefore, we do not measure the two-sided Chamfer distance, but measure only the distance of nearest
neighbors of validation point clouds in the generated mesh. Formally, we have:
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2.4. Conditional Synthesis

We showcased in the main paper various conditional synthesis tasks, for which we provide more details here.
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, 2nd, 3rd £oaw EPIPS  £5  £vg | NoVQ | K| =21 |K|=2"2 | Full
Generative Metric (FID) 65.1 83.0 80.3 64.7 - 66.2 59.5
Recon. Metric (¢5 input view) | 1.78 1.92 1.44 1.62 2.21 1.81 1.55
Recon. Metric (¢4 cross view) | 2.42 2.28 2.14 1.71 2.28 2.30 1.83

Table 1. We perform various ablation studies on 1) removing each term in out overall loss function; 2) Removing vector quantization entirely;
3) Different codebook sizes K. We further report stage 1 model’s reconstruction quality using ¢ losses for input views as well as novel
views.

Discrete Conditions. We feed discrete conditions (object class, time-of-day) as additional tokens to MaskGIT. Specifically,
we increase the vocabulary size by the number of classes in the discrete conditions. Object class contains 4 options: cars, truck,
bus and others. Time-of-day is a binary variable of day versus night. The vocabulary thus becomes 2048 + 4 for object class,
and 2048 + 2 for time-of-day. We feed the conditional input as an additional token to the 768 tri-plane latents by concatenating
the two, resulting in an input of sequence length 769. The sequence is then fed into MaskGIT for masked token prediction as
in unconditional case.

Continuous Conditions. Alternatively, we feed continuous conditions to MaskGIT by concatenating conditional input
with MaskGIT intermediate layer’s output. Specifically, MaskGIT first generates word embedding for each token in the
sequence. We pass the continuous condition through a fully-connected layer and concatenate the output with each token’s word
embedding. The concatenated embedding is then passed through the rest of the network. To synthesize samples conditioned
on object semantics, we feed semantic embedding from a pre-trained DINO model [23]. To condition on object scale, we pass
in positional embedding of object scale. We use standard cosine and sine positional embedding of degree 6.

Image-conditioned Assets Variations. Given our mask-based iterative sampling stage, we can generate image-conditioned
asset with variations. We first use stage-1 model to perform reconstruction, retrieving a full-set of predicted tri-plane latents.
We then generate variations of the reconstructed instance by randomly masking out tri-plane latents. The degree of variations
can be controlled by masking out different number of tokens. By masking 90% of tokens, we observe the variations are mostly
reflected in generated assets under different textures. By masking out 99% of tokens, we see changes in object shapes more
significantly, while the general object class remain the same. We believe how to better control the variation process is an
interesting direction to explore in the future.

3. Additional GINA Visualizations

We present additional visualizations of GINA-3D model in Fig. 4.

4. Ablation on Loss Terms and Stage 1 Evaluation

Ablation study. In this experiment, we use our scaled box model, trained with LiDAR supervision as our base model. We
conduct ablation studies by removing each loss, removing quantization entirely and training with different codebook sizes. As
shown in Table 1, the ablaion results justify each loss term we introduced in the paper, as removing each one of them leads to
higher FID compared to the full model. This finding is consistent with Esser et al. [24], which suggests LPIPS is important for
visual fidelity. In addition, larger codebook K (2!2) has marginal impact in our setting.

Evaluating stage 1 model. We report /5 reconstruction loss (in 10~2) on the input and novel views of unseen instances.
The model is able to obtain better reconstruction performance by removing quantization entirely (No VQ), but it deprives the
discrete codebook for stage 2 generative training. While generation and reconstruction correlates to some extent, performance
rankings (color-coded) differ between them.

5. Discussions on Baselines

Generating the full images. Directly modeling full images of data-in-the-wild yields significant challenges. In the early
stage of the project, we experimented with directly using GAN-based approaches on full images. As illustrated in Fig. 5-a,b,
feeding full images without explicit modeling of occlusion makes learning challenging on our benchmark. For EG3D, we
observed that training EG3D with unmasked image leads to training collapse, due to the absence of foreground and background
modeling. For example, the generated image samples in Fig. 6-b lack diversity in shape and appearance (e.g. color).
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Figure 4. Additional qualitative results of GINA-3D.




%

B

(c) Generated image samples from jointly generating object RGB and occlusion masks (random views)

Figure 5. Additional results on generation results trained on full images. a) We trained GIRAFFE on full images; b) We trained EG3D
models on full images; c) We augmented the EG3D model by jointly generating object RGB, background RGB and occlusion masks.
We visualizes object RGB and its corresponding occlusion mask in alternate columns. Results suggest that it’s difficult for the model to
disentangle object shape and occlusion.

We clarify a key difference to pure GAN-based approaches (GIRAFFE and EG3D) is that our approach has two training
stages and the masked loss is only applied in the first stage to reconstruct the input. In other words, masked loss cannot be
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(a) Generated image samples from GIRAFFE trained on masked images (fixed views)
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(b) Generated image samples from EG3D trained on masked images (fixed views)

Figure 6. Additional results on generation results trained on masked images. a) Additional visualizations of GIRAFFE baseline reported in
the main paper; b) Additional visualizations of EG3D baseline reported in the main paper. Results suggest that it’s difficult for GIRAFFE to
disentangle rotation. Both baselines show significant occlusion artifacts.

(a) A random batch of 16 EG3D extracted meshes. (b) A random batch of 16 GINA-3D extracted meshes.

Figure 7. Example mesh extractions from EG3D and GINA-3D.

directly applied to existing GAN-based approaches as the corresponding object mask for each generated RGB is not observed
in the adversarial (encoder-free) training. Alternatively, one can still apply the masked loss by factorizing RGB, object
silhouette and occlusion. We have tried many variations of this idea in the early stage without avail, as learning disentangled
factors was challenging for adversarial training. We provide such examples in Fig. 5-c. In this experiment, we tried to extend
EG3D by generating occlusion masks with a separate branch. However, the training became very unstable and we were not
able to produce improved results beyond the original EG3D on our benchmark. As we can see, the model fails to disentangle
object silhouette and occlusion. It still generates partial shape, while generating some plausible foreground occlusion. In
fact, occlusion is even more challenging to generate explicitly on our data where object silhouettes and occlusion masks are
entangled, as the outcome depends on the view and layout.

Generating the object images. Whitening out non-object regions has been used by EG3D (see ShapeNet-Cars in its supp.)
and GET3D. It combines white color to pixels with & < 1 during neural rendering, which implicitly supervise «.. Such set up
separates object pixels from the surroundings, and makes generation focused on object modeling. We follow this design and
have found in our experiments that baselines fail to generate separated target object without whitening-out.

We provide additional details about the baseline methods GIRAFFE and EG3D in Fig. 6. We noticed that the learned
GIRAFFE models are capable of generating vehicle-like patches but with viewpoints, occlusions and identities entangled in
the latent space. For example, we generate a pair of images (in Fig. 6(a)) by varying the viewpoint variable while keeping the



identity latent variable fixed. It turns out that the generations are not easily controllable by the viewpoint variables, while the
vehicle identities often change across views. The entangled representation makes the extracted meshes not very meaningful for
the GIRAFFE baseline on our benchmark. Additionally, the geometry extraction becomes even harder as the rendering mask
is defined at a low dimensional resolution 162.

6. Extracted Meshes

As mentioned in the main text, we use marching cubes [25] with density threshold of 10 to extract meshes for geometry
evaluation. We showcase here random samples of extracted meshes from EG3D and GINA-3D. We show 16 examples each in
Fig. 7a-7b. As we see, EG3D meshes can contain artifacts like missing parts of shape (row 3 right two). Furthermore, it shows
relatively little diversity. GINA-3D not only preserves complete shapes, but also demonstrate a greater diversity, including
more shape variation and semantic variation (mini-van row 2 column 4; bus row 4 column 4). Such observation is consistent
with our quantitative evaluations.

However, we do observe that GINA-3D meshes can be non-watertight and contain holes. We hope to address such problems
in future works. We believe that by incorporating other representations like Signed Distance Fields (SDF), the mesh quality
can be further improved.
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