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Figure 1. Details of the global transformer.

A. Datasets
3DPW. 3DPW [8] is a challenging in-the-wild consisting of
60 videos, which are captured by a phone at 30 fps. More-
over, IMU sensors are utilized to obtain the near ground-
truth SMPL parameters, i.e., pose and shape. We utilize the
official split to train and test our model, where the training,
validation, and test sets are comprised of 24, 12, and 24
videos, respectively. For evaluation, we report MPVPE on
3DPW because it has ground-truth shape annotation.
Human3.6M. Human3.6M [4] is a large-scale dataset col-
lected under a controlled indoor environment and includes
3.6M video frames. Folloing [3,9], we train the model on 5
subjects (i.e., S1, S5, S6, S7, and S8) and test it on 2 sub-
jects (i.e., S9 and S11). We set the frame rate of the dataset
to 25 fps for training and testing.
MPI-INF-3DHP. MPI-INF-3DHP [5]] is a complex dataset
captured at indoor and outdoor scenes with a markerless
motion capture system. The 3D human pose annotations
are computed by the multiview method. The training and
testing sets are comprised of 8 and 6 subjects, respectively.
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Figure 2. Details of the local transformer.

PA-MPJPE↓ MPJPE↓ MPVPE↓ Accel↓

w/o Detach 50.9 81.2 96.4 6.6
w/ Detach 50.6 80.7 96.3 6.6

Table 1. Gradient detachment

Each subject has 16 videos captured in the indoor or out-
door environment. The total video frames are 1.3M. Fol-
lowing previous works [3, 9], we utilize the official training
and testing split.

InstaVariety. InstaVariety is a 2D human pose dataset col-
lected from Instagram. It consists of 28K videos, and the
video length is an average of 6 seconds. The 2D annotation
is generated from Openpose [2]. Following [3, 5], we use
this dataset for training.

PoseTrack. PoseTrack [1] is also a 2D human dataset for
multi-person pose estimation and tracking, which consists
of 1.3K videos. Following [3], we use 792 videos for train-
ing.
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Figure 3. Comparison with other methods [3, 9]. Please use Adobe Acrobat to view it.

Figure 4. An Example of internet video. We sample every ten frames. Please use Adobe Acrobat to view it.

PA-MPJPE↓ MPJPE↓ MPVPE↓ Accel↓

Fix 52.1 83.4 99.5 6.4
Learnable 50.6 80.7 96.3 6.6

Table 2. Position embedding

B. Model details

Global transformer. The model details are shown in Fig-
ure 1. We utilize two layers of the encoder block with 512
dimensions. In the global decoder, we only apply one layer
of the decoder block with 256 dimensions. The position
embedding is learnable.
Local transformer. As shown in Figure 2, the encoder
block is similar to the global encoder. We set three layers
of the encoder block with 256 channel sizes. In addition,
we employ cross-attention to the decoder and set the layer
to one. The channel size is the same as the encoder.

C. Effect of gradient detachment

Table 1 shows the effect of gradient detachment. When
we do not backward propagate the path of global estimation
to HSCR, GLoT achieves the best performance. It is intu-
itively reasonable that fixing one is easier for optimization.

In addition, w/o Detach also obtains good results.

D. Effect of position embedding
In Table 2, we report the results of the different types of

position embeddings. The learnable embedding obtains the
best performance.

E. Inference time (GPU: V100) and MACs

Model MACs (M) Time (ms) PA-MPJPE

TCMR 861.8 11.7 52.7
MPS-Net 318.4 17.6 52.1
Ours w/ Residual 287.9 13.0 51.5
Ours w/ HSCR 288.1 16.2 50.6

Table 3. Inference time and MACs.

We provide the results of inference time and MACs in
Table 3. Our model achieves the lowest MACs. For infer-
ence time, our model (w/ HSCR) is slower than TCMR [3]
but faster than the previous SOTA method MPS-Net [9]. We
analyze that the reason for slower than TCMR is the self-
attention mechanism used in our model and MPS-Net. Al-



Figure 5. An Example of internet video. Please use Adobe Acrobat to view it.

Figure 6. Some failure cases.

though our model (w/ HSCR) is slower than TCMR by 4.5
ms, it shows a significant improvement in PA-MPJPE. Be-
sides, we provide the inference time of our model (w/ Resid-
ual) for comparing the time consumption of the HSCR. It is
worth noting that our model (w/ Residual) reduces 1.2 PA-
MPJPE with a time consumption of only 1.3 ms compared
with TCMR.

F. Input length of the global encoder

length PA-MPJPE↓ MPJPE↓ MPVPE↓ Accel↓

32 51.2 82.0 98.3 6.7
24 51.2 82.7 98.5 6.7
16 50.6 80.7 96.3 6.6

Table 4. Input length of the global encoder.

Although the 16-frame input length is commonly used in
this task, we consider that exploring more input lengths is
valuable. In Table 4, we supply the study of longer input
lengths, 24 and 32. The 16-frame setting achieves the best
results. A possible reason is that our lightweight global en-
coder can not sufficiently model longer temporal relations.

G. More qualitative results
We show the comparison results with other methods in

Figure 3. We observe (1) The results of MPS-Net [9] suffer

from insufficient local details. (2) The results of TCMR [3]
do not capture the actual human global location of the
frames. Figure 4 and 5 are multi-person internet videos, we
first use a multi-object tracker to process videos and then
utilize our method for each tracked person, following the
previous methods [3, 9].

H. Failure cases
As shown in Figure 6, we provide some failure cases,

mainly including occlusion. We divide the occlusion into
two types, i.e., object occlusion (Left Figure) and trunca-
tion of the frame (Right Figure, some joints are outside of
the frame). We consider that these cases are caused by long-
term occlusion, which means the input frames are all oc-
cluded by the object or truncated by the camera, leading to
failures in temporal modeling.

I. Future works
We plan to use this framework in similar tasks, i.e., hand

pose and shape estimation [6, 10]. This task will provide
a more robust hand representation for downstream tasks,
e.g., sign language recognition [7]. Moreover, we believe
that exploring multi-person interaction in a video would
be a good idea. While there are some methods in image-
based tasks to deal with occlusion problems caused by mul-
tiple people, video-based methods in this area are still un-
explored.
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