Supplementary Material:
Progressive Transformation Learning for Leveraging Virtual Images in Training

1. Gaussian Discriminant Analysis for Model-
ing Representation Space of Detector

In this section, we describe modeling the representation
space of a general object detector by fitting a multivariate
Gaussian distribution. We denote the random variable of
the input and its label of a linear classifier as x € & and
y=A{ycte=1,..c € ¥,y. = {0, 1}, respectively. Then, the
posterior distribution defined by the linear classifier whose
output formed by the sigmoid function can be expressed as
follows:
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where w, and b, are weights and bias of the linear classifier
for a category c, respectively.

Gaussian Discriminant Analysis (GDA) models the pos-
terior distribution of the classifier by assuming that the class
conditional distribution (P(x|y)) and the class prior dis-
tribution (P(y)) follow the multivariate Gaussian and the
Bernoulli distributions, respectively, as follows:
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where 1170,1y and 31 1} are the mean and covariance of the
multivariate Gaussian distribution, and 3,1y is the unnor-
malized prior for the category c and the background.

For the special case of GDA where all categories share
the same covariance matrix (i.e., X9 = X1 = X.), known
as Linear Discriminant Analysis (LDA), the posterior distri-
bution (P(y.|x)) can be expressed with P(x|y.) and P(y.)

as follows:
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Note that the quadratic term is canceled out since the shared
covariance matrix is used. The posterior distribution de-
rived by GDA in eq. 3 then becomes equivalent to the
posterior distribution of the linear classifier with the sig-
moid function in eq. 1 when w, = (,ul—uo)—r ¥ 1 and
be = —3pi 22+ 2 ud 7 o +1og Bi/Bo- This implies
that the representation space formed by x can be modeled by
a multivariate Gaussian distribution.

Based on the above derivation, if x is the output of the
penultimate layer of an object detector for a region pro-
posal, and a linear classifier defined by w. and b, is the
last layer of the object detector, it can be said that the rep-
resentation space of the object detector for a category c can
be modeled with a multivariate Gaussian distribution. In
other words, the representation space for a category c can
be represented by two parameters pq (i.e., i) and X, of the
multivariate Gaussian distribution.

Discussion. The sigmoid function can be viewed as a spe-
cial case of the softmax function defined for a single cate-
gory as both functions take the form of an exponential term
for the category-of-interest normalized by the sum of ex-
ponential terms for all considered categories. Therefore, it
is straightforward to derive the modeling for the sigmoid-
based detector from the previous work by [4], who shows
that the softmax-based classifier can be modeled with a mul-
tivariate Gaussian distribution in the representation space.
However, our derivation is still meaningful in that it ex-
tends the applicability of an existing modeling limited to



(a) Detector training

(b) Generator training

config baseline —pretr?iln-h{letune naive merge PTL config natve merge PTL
pretrain  finetune w/ transform

optimizer SGD optimizer Adam

momentum 0.9 momentum B1, B2 =0.5,0.999

weight decay 0.0001 Ir 0.0002

base Ir 0.001 total epochs 80 100

Ir schedule multi-step Ir batch size 8

gamma 0.1 load size 256

warmup iter. 1000 preprocess None

total iter. 6000 6000 600 6000

steps 5000 5000 500 5000

batch size 16

filter empty annot. False

box threshold 10

aspect ratio grouping False

Table 1. Training settings.

a certain type of classifier (i.e., based on softmax) to gen-
eral object detectors (i.e., based on sigmoid). Most object
detectors, especially one-stage detectors, generally use the
sigmoid function, which does not consider other categories
when calculating the model output for a certain category,
since more than one category can be active on a single out-
put.

2. Implementation Details

Multi-scale training. We apply the multi-scale training
strategy when preparing input images, in addition to the 5-
level multi-scaling property provided by the detector’s FPN
module, to train the detector. The goal is to make the detec-
tor more robust to the variations of human size in the im-
ages. Since the real and virtual datasets have widely vary-
ing human sizes in the images, we apply different scaling
factors for each dataset to share similar human sizes after
image rescaling. Specifically, for the real dataset, the input
image is resized by one of the scaling factors randomly se-
lected from {768, 800, 832,864} for the short side, in which
the long side is constrained not to be larger than 1440, for
every training iteration. For the virtual dataset, the scaling
factors are {128, 256, 384, 512} for the short side and 512
for the long side.

Network architecture. To obtain a generator, we adopt
CycleGAN, where two generators and two discrimina-
tors are involved during model training. For each gen-
erator, we use a 24-layer UNet-like architecture (i.e., the
resnet_9blocks generator in the official repository of
CycleGAN [2]), which contains nine 2-layer residual mod-
ules in the middle of the architecture where the encoder and
decoder are connected. For each discriminator, a 5-layer
fully convolutional network (i.e., the basic discriminator
in the official repository of CycleGAN [2]) is used.

For the detector, we adopt the official RetinaNet archi-

tecture implemented in Detectron2 [6] with few modifica-
tions. First of all, the feature dimension of RetinaNet’s clas-
sification subnet and box regression subnet are decreased
from 256 to 32 since we are dealing with single category
(i.e., human) instead of multiple categories (e.g., 80 cate-
gories for detectors trained on the MS COCO dataset). In
addition, we switch the activation function used in these two
subnets from ReL.U to LeakyReL U to avoid the singular co-
variance matrix problem, which may occur when calculat-
ing the Mahalanobis distance, occasionally triggered by the
dying ReLU problem. Finally, the kernel size of the last
convolutional layer in the classification subnet, the layer
just in front of the sigmoid layer, is reduced from 3x3 to
1x1 so that each output prediction is associated with only
one feature vector in the feature representation space. Here,
ResNet50 is used as the backbone.

Training details. The settings used for training the human
detector through our method and the other baseline meth-
ods are listed in Table la. Without further specification,
we follow all the settings and initialization strategies de-
fined by the original RetinaNet training [5]. Unlike other
model training, using fewer iterations for fine-tuning when
adopting the pretrain-finetune method is common because
training converges faster. Although fine-tuning usually uses
a lower learning rate than pre-training, we use the same
learning rate (i.e., 0.001) for both stages because we also
fine-tune the ImageNet-pretrained backbone on the virtual
images in the pre-training stage.

The settings used for training the generator through the
baseline method using transformation (i.e., ‘naive merge
w/ transformation’) and our method are listed in Table 1b.
These settings and initialization strategies are taken from
the original CycleGAN training [7]. ‘Naive merge w/ trans-
form’ used fewer training epochs than PTL (80 vs 100) be-
cause all images in the virtual set are used for training. In
general, as the size of the dataset increases, the number of
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Figure 1. Sample images from each dataset. For the Archangel-Synthetic dataset, metadata for each image is shown to the right of the

image.

epochs required for training decreases.

Datasets. In this section, we provide the details of the
three real UAV-based datasets, VisDrone [8], Okutama-
Action [3], and ICG [1]), and the virtual UAV-based dataset,
Archangel-Synthetic, used in this paper. Sample images for
each dataset are shown in Figure 1.

VisDrone has four tracks (i.e., object detection (DET),
video object detection (VID), single object tracking (SOT),

and multi-object tracking (MOT)) with a separate dataset
for each track. We use the dataset from the DET track and
focus on detecting the person and the pedestrian categories
among the ten object categories covered by the track. The
VisDrone dataset in the DET track consists of 10,209 im-
ages, where 6,471 images are used in the training set,
548 images are used in the validation set, 1,580 images
are used in the test-challenge set, and 1,610 images



are used in the test-dev set. We use the training set
for model training and the te st —dev set for model testing.
The maximal resolution of images in the VisDrone dataset
is 2000 1500.

Okutama-Action was originally created for human ac-
tion detection from the aerial view. Although the main task
associated with this dataset is human action detection, the
dataset also includes a sub-task of pedestrian detection. To
acquire images from various aerial views, a drone with an
embedded camera flew freely at some altitudes between
10m and 45m, and the camera angle was set at 45 or 90
degrees. The Okutama-Action dataset contains 43 video se-
quences in 4K resolution (i.e., 3840x2160), where 33 video
sequences are used for the t rain—-val set and the remain-
ing 10 video sequences are used for the test set. Since
adjacent frames in the video sequence are very similar, we
use every tenth frame in both the train-val set and the
test set. Our model is trained on the t rain—-val set and
tested with the test set.

ICG was collected for studying semantic understanding
of urban scenes. Additionally, the ICG dataset also pro-
vides information, such as ground-truth human bounding
boxes, for the human detection task. Images in the ICG
dataset were captured from a camera located at some alti-
tudes between 5-50m above the ground at a resolution of
6000x4000. The ICG dataset provides a training set
of 400 images for the human detection task, of which we
use the first 320 images for training and the remaining 80
images for testing.

Archangel-Synthetic is one of the three sub-datasets in-
cluded in the Archangel dataset, along with Archangel-Real
and Archangel-Mannequin. The Archangel dataset is a hy-
brid UAV-based dataset captured with similar imaging con-
ditions in real and synthetic domains. An important prop-
erty of the Archangel dataset that sets it apart from other
datasets is that it provides metadata about the camera posi-
tions in terms of UAV altitudes and radii of the rotation cir-
cles for each image. The Archangel-Synthetic dataset was
generated by using the Unity game engine. The dataset in-
cludes eight virtual characters in three different poses cap-
tured with camera viewing angles ranging from 0° to 358°
in increments of 2°, UAV altitudes and rotation circle radii
from 5m to 80m in increments of 5m, and four different
sun angles. The total number of images in the Archangel-
Synthetic dataset is 4.4M. Considering the significant dif-
ference in dataset size between the Archangel-Synthetic
dataset with the other real datasets, a small subset of the en-
tire dataset (17.6K) was used as the virtual image set in our
experiments. The size of images in the Archangel-Synthetic
dataset is 512x512.

method total detail
baseline 40
pretrain-finetune 21 | 4/17 (pretrain / finetune)

naive merge 17
w/ transform | 2,777 | 2,760/17 (GAN train / Dtr train)
PTL 600 | 20/iter. (domain gap calc. on virtual set)

40/36/32/28/25/22 (Dtr train, ~6" iter.)
28/41/56/69/83 (GAN train, ~5'" iter.)

Table 2. Wall-clock training time in mins (VisDrone, 20-shot).
GeForce RTX 2080 Ti GPUs are used for this comparison.

metric \ Vis | Oku ICG
Euclidean 5.287/1.52 28.80 /6.83 26.00 /7.06
Mahalanobis 6.83 /1.94 30.72 /7.45 26.86 /7.22

Table 3. Comparison of various distance metrics (VisDrone,
20-shot).

3. Additional Analyses

Training time comparison. Training times for PTL and the
baselines are shown in Tab 2. For PTL, it is observed that
the detector training time (i.e., ‘Dtr train’ in the table) de-
creases as training progresses because the number of virtual
images (i.e., Archangel-Synthetic) with a usually smaller
image size than real images (i.e., VisDrone) increases dur-
ing training. Detector training in PTL uses the same num-
ber of iterations regardless of the PTL iteration. In contrast,
the CycleGAN training time (i.e., ‘GAN train’ in the table)
gradually increases due to the increased number of virtual
images.

PTL is slow due to CycleGAN training, but it is still
much faster than ‘naive merge w/ transform’ (i.e., the base-
line using transformation) because only a subset of virtual
images is used instead of the full set for each PTL iteration.
PTL can lead to scalabillity issues due to its training time
when a large number of virtual images are used with longer
iterations. To address this issue, we can reduce the Cycle-
GAN training time for each PTL iteration by fine-tuning the
model trained in the previous PTL iteration.

Analysis of domain gap measurement. To investigate the
effect of using the Mahalanobis distance to measure the do-
main gap, we compare it to other metric available under the
assumption that the representation for a certain category in
a real dataset is modeled by a multivariate Gaussian distri-
bution. Specifically, we use Euclidean distance, which de-
pends only on the mean but not on the covariance of the dis-
tribution. As shown in Table 3, using Mahalanobis distance
consistently presents better accuracy in both the in-domain
and cross-domain setups.

Analysis of transformation candidate selection. To in-
vestigate the effect of using weighted random sampling to
select transformation candidates, we compare it with a va-
riety of other selection strategies. We carry out experiments
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Figure 2. Accumulated distributions of transformation candidates with respect to camera locations in more setups. This figure shows
the distributions in other five experimental setups except for the setup (i.e., VisDrone, 50-img) shown in Figure 3 of the main manuscript.
The x and y axes indicate altitude and rotation circle radius from the target human.

test | close 100 mid 100 far 100 our mation candidates in relation to the camera position (in Fig-
Vis 9.11/ 2.71 9.11/ 2.89 8.64/ 2.53 9.38/ 2.94 . R

ure 2) and the domain gap (in Figure 3) for other five cases
Oku | 39.57/11.05 433171155 4198/11.32 | 42.39/11.47 not shown in Figure 3 of the main manuscript. We intend to
ICG 29.66/ 7.40 34.98/ 8.97 31.24/ 8.19 30.01/ 7.36 g pt.

Table 4. Various transformation candidate selections (Vis-
Drone, 50-shot).

selecting 100 virtual images with three different ranges of
domain gaps ({close, mid, far}) instead of using weighted
random sampling (‘our’ in the table) for each PTL iteration
in Tab 4. We observe that our selection strategy is the best
in the in-domain setup without sacrificing accuracy much in
the cross-domain setup.

Further analysis of the properties of progressive learn-
ing. In this section, we show the distributions of transfor-

show that the analysis described in the main manuscript can
be also applied to these cases.

For the distributions of transformation candidates with
respect to camera locations (Figure 2), the observation
shown in the main manuscript is also applied to the other
five cases. That is, as PTL progresses, the camera locations
of virtual images included in the training set are gradually
spread over the entire area. Therefore, the validity of the
transformation candidate selection process of PTL extends
to all the experimental setups considered in this paper.

Note that the distributions of humans in the real train-
ing set with respect to camera locations is likely to be sim-
ilar to the distributions of transformation candidates with
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Figure 3. Distributions of virtual images with respect to the domain gap in more setups. This figure shows the domain gap distributions
of virtual images in other five experimental setups except for the setup (i.e., VisDrone, 50-img) shown in Figure 3 of the main manuscript.
The z axis represents the domain gap and the y axis represents the corresponding number of virtual images.

respect to camera locations at the first PTL iteration as a
virtual image with a smaller domain gap is selected with a
higher probability. Accordingly, we speculate that humans
in the real training set were captured from various camera
locations in the Okutama-action dataset. In contrast, in the
other two datasets, most of them were taken at some similar
ranges. In addition, in the ICG dataset, the camera loca-
tions where most images were taken are in the close range,
which might be the reason why diversifying camera loca-
tions through PTL does not significantly improve accuracy
in the cross-domain setup.

For the distributions of virtual images with respect to
the domain gap (Figure 3), the observation mentioned in
the main manuscript that the distribution becomes narrower
and smaller as PTL progresses is still perceived in these
settings. However, the speed of this distribution change is
particularly slow for the ICG dataset compared to the other
datasets, as shown in Figure 3. This observation also im-

plies that the ICG dataset has very different characteristics
compared to the other two datasets.

Qualitative analysis of transformation. Fig-
ures 4, 5, 6, 7, 8, and 9 show several samples of transformed
virtual images included in the training set using methods
with virtual2real transformation (i.e., PTL and ‘naive
merge w/ transformation’) in the six experimental setups.
Since the trends seen in these examples are similar to
Figure 5 in the main manuscript, a qualitative analysis of
the superiority of PTL over ‘naive merge w/ transform’
and our claim that the domain gap between virtual images
and real images should be considered when training the
virtual2real transformation generator can also be applied to
these experimental setups.



Naive merge w/ transform

PTL

Figure 4. Sample Virtual2Real transformation output (VisDrone, 20-shot). Each set consists of three images: original virtual image
(left), transformed image (middle), and transformed image with background (right).
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Naive merge w/ transform
Figure 5. Sample Virtual2Real transformation output (VisDrone, 50-shot). Each set consists of three images: original virtual image
(left), transformed image (middle), and transformed image with background (right).
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image (left), transformed image (middle), and transformed image with background (right).
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Naive merge w/ transform PTL
Figure 8. Sample Virtual2Real transformation output (ICG, 20-shot). Each set consists of three images: original virtual image (left),
transformed image (middle), and transformed image with background (right).

Naive merge w/ transform PTL
Figure 9. Sample Virtual2Real transformation output (ICG, 50-shot). Each set consists of three images: original virtual image (left),
transformed image (middle), and transformed image with background (right).



