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This supplementary material is structured as follows.
In Section 1, we explain the reasons for choosing the
datasets in the main paper and present the detailed dataset
configurations. In Section 2, we show some additional
quantitative results and analysis on datasets, as well as re-
sults on the computation time. This section also contains
several qualitative results. Section 3 provides the experi-
mental details of methods, including detailed training set-
tings of our method, ablation studies and the implementa-
tion of SOTA methods. Finally, Section 4 contains some
additional ablation studies.

1. Detailed Dataset Configuration

To facilitate an informed assessment of the results, we
further detail datasets and the usage, which were briefly
mentioned in Section 4.2 of the main paper. We evaluate
our method on 4 key benchmark datasets.

Mapillary Street Level Sequences (MSLS).
MSLS [15] is introduced to promote lifelong place-
recognition research, and contains over 1.6 million images
recorded in urban and suburban areas over 7 years. Com-
pared to other datasets, it covers the most comprehensive
variation (dynamic objects, season, light, viewpoint, and
weather), and we only evaluate the image-to-image task.
GPS coordinates and compass angles are provided for each
image, and the ground truth corresponding to a query is
the reference images located within 25m and 40◦ from the
query. The dataset is divided into a training set, a public
validation set and a withheld test set (MSLS challenge)1.
In training, we define a distance dqp to represent the FOV
overlap between query q and positive p:

dqp = ∥xq − xp∥2 /25 + (θq − θp) /40 < 1 (1)

*Corresponding author.
†Supported by National Science Foundation of China (No. 62088102).
1https://codalab.lisn.upsaclay.fr/competitions/865
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Figure 1. Visualization of sample distribution of MSLS training
set. The numbers indicate the number of samples.

where x is the GPS coordinate and θ is the angle. Eq. (1)
ensures an overlapping area between a query and a positive.

Nordland. The Nordland dataset [13] contains four
timestamp-aligned image sequences recorded in four sea-
sons, and hence it contains challenging appearance changes
and different weather conditions while few viewpoint vari-
ations. We use the partitioned dataset [9] containing 3450
images per sequence, with summer as reference and winter
as query. Same as [6, 9], we also remove all black tunnels
and times when the train is stopped. Ground truth tolerance
is set to 2 frames, that means that one query image corre-
sponds to 5 reference images.

Pittsburgh. The Pittsburgh dataset [14] contains 250k
images derived from Google Street View panoramas. The
data is generated by 24 perspective images (two pitch and
twelve yaw directions) at each place, which results in sig-
nificant viewpoint variations, along with dynamic objects.
As only GPS information is available, the ground truths for
evaluation are defined as reference images within 25m from
the query. In our experiments, we use the subset, Pitts30k,
and the weakly supervised sample mining strategy [1] in
training. It contains 30k database images and 24k queries,
which are geographically divided into train/val./test sets.

2. Additional Results
Complementarity of RGB and SEG. In the main pa-

per, we mentioned that there is a sample-level complemen-
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Figure 2. Qualitative Results. In these examples, our method successfully retrieves the matching reference images. For other methods,
red borders indicate false matches and green borders indicate correct matches.
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Figure 3. Comparison with state-of-the-art on MSLS val. set.
We show the comparison of Recall@N performance with other
methods. Results w/o re-ranking are depicted in dotted line, while
results with re-ranking are depicted in solid line. * indicates unof-
ficially reproduced results, and details are in Section 3.2.
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Figure 4. The Recall@1 scores on MSLS validation set are shown
on the y-axis, and the x-axis represents the accumulated time of
feature extraction and feature matching.

tarity between RGB images and segmentation images for
VPR. We calculate the Recall@1 of seg-branch in the query
sets with correct/wrong predictions at top-1 ranking list of
rgb-branch, respectively, and we swap branches and do the
calculation again. The specific results on the MSLS training
set are as shown in Figure 1.

Qualitative results. Figure 2 illustrates example

Table 1. Performance of selective distillation with different sam-
ples on Nordland dataset. None refers to the rgb-branch without
distillation and All refers to non-selective distillation.

Group for
distillation

Sample
ratio

Nordland
R@1 R@5 R@10 R@15 R@20

None 0% 48.3 69.2 76.1 80.6 83.0
All 100% 55.4 71.9 76.9 79.4 80.7

D1 4.11% 51.2 69.1 75.9 79.8 82.5
D2 50.67% 52.5 72.1 79.8 83.5 85.8
D3 14.77% 42.4 62.5 70.8 75.1 78.4
S1 69.55% 54.8 74.0 81.1 83.2 84.8

S2(D4) 30.45% 33.0 54.4 64.2 69.5 72.8
R1 73.24% 55.2 73.7 79.6 82.6 84.0
R2 26.76% 51.0 67.4 73.0 75.4 77.8

Ours 69.55% 56.1 75.5 82.9 86.2 88.3

Table 2. Performance of seg-branch with different number of clus-
tered classes. Note that † indicates another weighted encoding.

Clustered
classes

Nordland
R@1 R@5 R@10 R@15 R@20

3 40.4 63.6 73.6 78.0 81.1
6 41.1 63.8 73.2 78.6 81.6

150 25.1 41.4 50.4 55.3 58.9

6 † 34.5 53.0 61.3 65.9 69.1
6 (Ours) 56.1 75.5 82.9 86.2 88.3

matches with challenging conditions, such as viewpoint
changes, occlusions caused by dynamic objects, and sea-
sons. In these examples, other methods show a tendency to
retrieve images with similar appearance as the query. Espe-
cially in the case of MSLS, the color tone and the vehicle
ahead of retrievals of Patch-NetVLAD and DELG are con-
sistent with query. Ours can successfully retrieve images
based on structural information, paying more attention to
the spatial information of static objects in the background.

Additional recall plots. Table 1 in the main pa-



per shows the Recall@N performance on the benchmark
datasets. More intuitively, Figure 3 shows the detailed
Recall@N performance for the MSLS validation dataset.

Efficiency-accuracy. Table 2 in the main paper shows
the feature extraction, feature matching time and storage
required to process each query. In Figure 4, we show the
the accumulated time of feature extraction and matching as
well as their performances on MSLS validation set. Ours
achieves the best trade-off between accuracy and efficiency.

Ablations on other datasets. In Table 1 and Table 2,
we provide more results on Nordland dataset for ablation
experiments discussed in the main paper.

3. More Implementation Details
3.1. Training Details

Ours. To obtain segmentation images offline, we use
ADE20K [19]2 and PSPNet [17] and the open-source code-
base 3 with configuration file of “ade20k-resnet50dilated-
ppm deepsup”. MobileNetV2 is initialed with the pre-
trained weights on ImageNet 4. MobileNet-L in seg-branch
refers to the implementation of depth-stream in MobileSal5.

In the first learning stage, rgb-branch and seg-branch
are fine-tuned with the whole backbone using initial
lr=0.001, where rgb-branch starts with a pre-trained model
on ImageNet and seg-branch starts with random parameters.
In the second learning stage, backbone also starts with a
pre-trained model on ImageNet and is fine-tuned as a whole
with initial lr=0.0001. We also attempted to continue the
second stage on the basis of pre-trained network in the first
training stage, but the difference is not significant.

Models are all optimized by AdamW optimizer [18]
with 0.0001 weight decay and cosine learning rate decay
schedule, and m in VPR loss is 0.1. The network which
yields the best recall@5 on the val. set is used for testing.

For running SuperGlue network with SuperPoint based
on our global retrieval, the details are shown in Section 3.2.

Concat-input. We concatenate RGB image and en-
coded segmentation label map in channel C as input, where
the C of the first layer changes from 3 to 9 compared with
rgb-branch. The model is fine-tuned with the whole back-
bone and initial lr=5e-5. The dim of global features is 448.

Concat-feat. Two separate networks, same as the two
branches in the first stage, are used to extract features sep-
arately. Then the two features are concatenated, followed
by a L2 normalization step, as final global features to build
loss function. The two models are fine-tuned with the whole
backbone and initial lr=0.00005. The final loss is the direct
sum of the two losses. The dim of global features is 928.

2The largest open-source dataset for semantic segmentation and scene
parsing, similar to the distribution of VPR datasets.

3https://github.com/CSAILVision/semantic-segmentation-pytorch
4https://download.pytorch.org/models/mobilenet v2-b0353104.pth
5https://github.com/yuhuan-wu/MobileSal

Multi-task. The implementation of decoder refers to
U-Net [11] 6. The model is fine-tuned with the whole back-
bone and initial lr=0.0001. The final loss is the sum of
the vanilla VPR loss and the weighted cross-entropy loss,
where the weight of cross-entropy is 0.1. The dim of global
features is 448.

It is worth noting that the results of the Multi-task are
not as good as expected, and the training process has high
requirements for parameter tuning. Furthermore, compared
with implicit supervision in the form of encoder-decoder,
knowledge distillation is more direct and interpretable for
enhancing structural information in features.

3.2. Implementation Details of Baselines

NetVLAD [1]. We use the pytorch implementation7

and its released model trained on Pitts30k training set with
VGG-16 backbone. Note that this method does not resize
the image.

SFRS [5]. This work proposes a self-supervised
method with image-to-region similarities to fully explore
the potential of difficult positive images alongside their sub-
regions. We use the official implementation8 and the re-
leased model trained on Pitts30k training set.

SP-SuperGlue [4, 12]. SuperGlue trains a neural net-
work that matches two sets of local features by jointly find-
ing correspondences and rejecting non-matchable points.
The implementation of SP-SuperGlue in our main paper in-
cludes: using NetVLAD for global retrieval, then extracting
SuperPoint local features, and applying SuperGlue to iden-
tify matches and to re-rank candidates. We use the the of-
ficial implementation 9 and choose the pre-trained outdoor
weights on MegaDepth dataset [8].

Patch-NetVLAD [6]. This work derives patch-level
features from NetVLAD residuals. We use the official
implementation 10 for speed-focused and performance-
focused configurations in our main paper. Following the
original paper, the model trained on Pitts30k is used for ur-
ban imagery (Pittsburgh) , and the model trained on MSLS
is used for all other conditions.

DELG [2]. This work unifies global and local features
into a single deep model. We refer to the pytorch imple-
mentation of two models 1112 and change the extraction of
global features (dim=2048) to the way in the original paper:
For global features, we use 3 scales; L2 normalization is
applied for each scale independently, then the three global
features are average-pooled, followed by another L2 nor-
malization step. For local features, all the reproduced re-

6https://github.com/milesial/Pytorch-UNet
7https://github.com/Nanne/pytorch-NetVlad
8https://github.com/yxgeee/OpenIBL
9https://github.com/magicleap/SuperGluepre-trainedNetwork

10https://github.com/QVPR/Patch-NetVLAD
11https://github.com/feymanpriv/DELG
12The results in Table 2 in the main paper are the best of the two models.

https://github.com/CSAILVision/semantic-segmentation-pytorch
https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
https://github.com/yuhuan-wu/MobileSal
https://github.com/milesial/Pytorch-UNet
https://github.com/Nanne/pytorch-NetVlad
https://github.com/yxgeee/OpenIBL
https://github.com/magicleap/SuperGluepre-trainedNetwork
https://github.com/QVPR/Patch-NetVLAD
https://github.com/feymanpriv/DELG


Figure 5. Visualization of the weight function. Some weights of
demarcation points are marked. X and Y mean the recall rankings
of samples of seg-branch and rgb-branch, same as the main paper.

sults are from the provided model, in which dim is 512 and
is different from the original paper (dim=128).

TransVPR. This work proposes a holistic model based
on vision Transformers, which can aggregate task-relevant
features. We use the official implementation13. Same to
Patch-NetVLAD, it finetuned the model on MSLS training
set and Pitts30k training set.

4. Additional Ablation Studies and Analysis
Prior weights for encoding. Limited to the length of

the article and the research content, in Section 4.5 of the
main paper, we only manually set three different weighting
cases and choose the best of the three, without finding the
optimal one. Figure 6 indicates that the value of static build-
ings should be larger than that of dynamic objects, which is
accorded with our intuition. This weighted attempt provides
the possibility for follow-up research, and further advance-
ments can be done, such as using grid search or learning
methods to obtain the weights through iterative optimiza-
tion.

Weighting function. For the weight function Eq. (4)
given in the main paper, we make the following supplemen-
tary explanations. In main paper, we attempted to apply
different constant weights to different groups according to
the performance of separate group in Table 4.

In fact, we also tried other constant weights, as shown
in Table 3. The results show that GP-D(8-4-1-0) and GP-
D(4-2-1-0) has a more reasonable weight distribution than
others, which proves our prediction of the importance of
different groups: the greater the performance improve-
ment when participating in distillation alone, the higher the
weight. Moreover, the difference between GP-D(8-4-1-0)
and GP-D(4-2-1-0) is small, and this experiment is mainly
for providing a numerical reference for the design of our

13https://github.com/RuotongWANG/TransVPR-model-
implementation

Table 3. Performance of weighted distillation with different
weights. The weights correspond to D1-D2-D3-D4.

Weight
MSLS val MSLS challenge

R@1 R@5 R@10 R@1 R@5 R@10

GP-D(1-4-8-0) 80.3 86.9 90.2 61.2 76.1 81.2
GP-D(1-2-4-0) 80.6 87.6 90.4 61.5 76.3 81.1
GP-D(4-2-1-0) 81.2 89.3 91.4 61.7 78.3 82.5
GP-D(8-4-1-0) 82.2 88.9 91.5 62.3 78.9 82.4

weight function. Therefore, we finally choose GP-D(8-4-1-
0) as the reference.

Based on reference constant weights, the specific func-
tion design includes the following consideration:

• φ cannot be negative;
• The non-zero part of φ should be proportional to y−x

and inversely proportional to x;
• The value of φ cannot be too large;
• The partial derivatives should be different for 3 groups.

The prototype of the function can be denoted as
f(y−x)
g(x) , where f(·) and g(·) are monotonically increasing

functions. Considering x should play an more important
role in weights than y − x, we choose liner for f(·) and
natural logarithm for g(·) (see Figure 5).

Throughout the design process, we did not perform
rigorous tuning of the parameters, but simply chose repre-
sentative design to demonstrate our insight and motivation.
In Table 4, we show more ablation experiments by replacing

y−x
ln(x+1) with y−x

x in (4). Combined with the performance of
distillation with fixed weights in Table 3, it can be seen that
the function performs better than the discrete fixed weights
and prototype function, showing the advantages of (4).

Table 4. Comparisons of functions.

y−x
x

MSLS val (81.2/89.5/92.2) MSLS challenge (64.2/79.1/83.2)

y−x
ln(x+1)

MSLS val (83.0/91.0/92.6) MSLS challenge (64.5/80.4/83.9)

Sensitivity to hyper-parameters. In Section 4.4 of
the main paper, we have performed ablation experiments
on the most important hyper-parameters. We further evalu-
ate the sensitivity of our model to changes in the other two
hyper-parameters: Nt and Nm in our group partition strat-
egy.

Here we perform unweighted selective distillation with
the experimental setup of GP-S, that is, on samples belong
to S1. The results are shown in Table 5 and Figure 6. It
can be seen that within the appropriate range of 5-15, the
performance is relatively close and we select 10 in the main
paper.

After Nt is set as 10, Nm is mainly used to limit the
weight range.

Sensitivity to Segmentation Models. In order to use
accurate semantic information, some previous works [7,10]

https://github.com/RuotongWANG/TransVPR-model-implementation
https://github.com/RuotongWANG/TransVPR-model-implementation
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Figure 6. Ablation experiments on the recall performance of
StructVPR with different Nt.

Table 5. The sample ratio corresponding to different Nt.

Nt 3 5 10 15 20

S1 60.75% 64.76% 69.55% 72.11% 73.82%
S2 39.25% 35.24% 30.45% 27.89% 26.18%

ResNet50-PSPNetResNet50-PSPNet ResNet50-UPerNetResNet50-UPerNet HRNetV2-C1HRNetV2-C1

Figure 7. Examples of three semantic segmentation models with 6
classes and 150 classes.

use synthetic virtual datasets for training, and then gener-
alize to real-world datasets through domain adaptation. In
the main paper, we use an open-source semantic segmen-
tation model to obtain segmentation images, which greatly
reduces the implementation costs and training difficulty.

We also use another two commonly used semantic seg-
mentation models (UPerNet [16] and HRNetV2 [3]) for
training to assess the sensitivity of StructVPR to the seg-
mentation models. We use the code-base14 with configura-
tion file of “ade20k-resnet50-upernet.yaml” and “ade20k-
hrnetv2.yaml”.

As shown in Figure 7, HRNetV2 is slightly better than
PSPNet and PSPNet is slightly better than UperNet with
fewer holes in the case of 150-class segmentation, while in
the case of 6-class segmentation, the difference among the
three models becomes smaller.

Table 6 shows that StructVPR is compatible with many
models and is little affected by segmentation models. It
is worth noting that due to time constraints, the results
of “StructVPR-HR” and “StructVPR-UPer” are only the
best performance among the current checkpoints, and we
can provide the latest results later. This also means that

14https://github.com/CSAILVision/semantic-segmentation-pytorch

Table 6. Performance of seg-branch and StructVPR with different
segmentation models. PSP is for ResNet50-PSPNet (main paper),
UPer is for ResNet50-UPerNet, and HR is for HRNetV2-C1.

Method
MSLS val MSLS test Nordland

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

SEG-UPer 66.2 80.7 83.8 41.5 58.7 64.6 39.7 62.4 71.5
SEG-HR 65.2 80.4 84.1 44.0 59.5 64.9 44.6 65.1 72.5

SEG-PSP 67.7 80.0 83.1 43.4 58.9 65.8 44.4 64.8 72.7

StructVPR-UPer 82.4 90.3 92.8 63.4 78.8 82.7 57.2 75.6 82.4
StructVPR-HR 81.62 90.41 91.9 60.8 79.3 83.0 59.3 77.7 84.7

StructVPR-PSP 83.0 91.0 92.6 64.5 80.4 83.9 56.1 75.5 82.9

StructVPR can achieve excellent performance without rely-
ing on semantic annotations ground truth. This is expected
since the structural information we extract does not rely on
completely accurate pixel-level segmentation, but more on
spatial relative positional relationships. Moreover, the clus-
tering operation in SLME also makes StructVPR less sensi-
tive to segmentation results.

Analysis. StructVPR achieves better performance and
maintains a low inference cost without re-ranking. Com-
pared to rgb-branch, StructVPR does have more costs in
training due to the large amount of training set. Never-
theless, compared to model training, annotation and group
partition are not expensive and mostly one-time efforts. At
last, considering the robustness of StructVPR to segmen-
tation label map after SLME, we can seek smaller models
or reduce the resolution to reduce costs of computing SEG
images.
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