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In the supplementary materials, we’ll provide more im-
plementation details about frequency decomposition in the
guided denoising module and more visual comparisons be-
tween our proposed SANet and competing denoising meth-
ods. In the manuscript, we have shown that the DASC-
based stereo matching technique [3] achieves plausible re-
sults in the case of clean input images. However, the match-
ing accuracy severely decreases in presence of noise. In the
supplementary materials, we further warp the guidance im-
ages based on the disparity maps computed by DASC and
other two learning-based unsupervised stereo matching ap-
proaches [4, 3], and demonstrate the guided denoising re-
sults using these warped guidance images. Besides, we will
also show that our structure aggregation module can ben-
efit other guided denoisers when handling unaligned situa-
tions. Finally, to better illustrate the structure aggregation
process, we visualize the perceptual weights of some circu-
larly shifted guidance images.

1. Frequency Decomposition for Guided Image
Denoising

In the guided denoising module, we leverage a spatially
variant linear representation model to regress the final de-
noising result X using the structure map U estimated by our
structure aggregation strategy. The representation model is
mathematically formulated as

X =W°0U+B, (1)

where W* is the scale weight to adjust the structure in-
tensity of the structure map, and B is the bias term to en-
sure that the pixel intensities are faithfully restored accord-
ing to the target image. In other words, W* and B can
be regarded as focusing on representing the high-frequency
and the low-frequency contents, respectively. Therefore, we
learn the representation model in the frequency domain. To
better perceive the low-frequency contents of the target im-
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age, the bias term B is estimated by a weighted fusion of
the input noisy image Y and the estimated noise map N.

In this work, following [7], we also use patch-wise 2D
discrete cosine transform (2D-DCT) for frequency decom-
position. Denote 7 () as the frequency decomposition func-
tion, the representation model can be re-written as

T(X)=WYXoT(Y)+WYoT(N)+WZoT(U). (2)

Specifically, the frequency decomposition is conducted
in sliding windows of size k x k. For a patch p;; centered at
position (i, ) of Y, we compute its frequency coefficients
q;; using 2D-DCT. That is,
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where &(u) = y/2/kforu=1,--- ,k —1and £(0) = 1.
Then, we reshape q;; into a vector q;; of size 1 x k2. Stack-
ing the frequency coefficients of all patches together, we
obtain 7(Y) € RHXWxK® \here T(Y)(4,4,1) = qi; (D).
T(N) and 7(U) are obtained in the same way. In addition,
since 2D-DCT is computed with a set of fixed and spatially-
invariant linear coefficients, it can be easily implemented
using a convolution layer with k2 fixed DCT kernels of size
k x k for GPU acceleration. Similarly, to transform the fre-
quency coefficients of the denoised image back to the spa-
tial domain, the inverse 2D-DCT can also be implemented
using a convolution layer. In [7], the authors provide the
implementation codes for the 2D-DCT and the inverse 2D-
DCT convolution layers.

2. Additional Experimental Results on Cross-
Spectral Stereo Image Pairs

In the manuscript, we show that it’s quite challenging to
guarantee the pixel-level registration accuracy for current



o=0.2 a=0.02,0 =0.2
Methods

PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS |
w/o structure aggregation 25.30 0.8345 0.2945 2491 0.8266 0.3008
w/ warped guidance image (DASC [3]) 25.38 0.8379 0.2934 24.99 0.8286 0.3054
w/ warped guidance image (Zhi et al. [13]) 25.34 0.8360 0.2952 24.96 0.8270 0.3085
w/ warped guidance image (Liang et al. [4]) 25.43 0.8403 0.2867 24.99 0.8285 0.3004
w/ structure aggregation (ours) 25.67 0.8477 0.2685 25.30 0.8411 0.2736

Table 1. The average PSNR (dB), SSIM and LPIPS values of denoising results obtained using the warped guidance images by DASC [3],

Zhietal. |
and mixed Poisson-Gaussian noise (o« = 0.02, 0 = 0.2).

], Liang et al. [4] and our estimated structure maps on images from the Flickr1024 Dataset [8] under Gaussian noise (o = 0.2)

FGDNet [7] MNNet [10]
Methods c=02 a=0.020=02 c=02 a=0.020=02

PSNR1 | SSIM 1 | LPIPS | | PSNR 1 | SSIM 1 | LPIPS | | PSNR 1 | SSIM 1 | LPIPS | | PSNR 1 | SSIM 1 | LPIPS |

Original 2497 | 0.8185 | 03107 | 2454 | 0.8102 | 03189 | 25.12 | 0.8269 | 0.3181 | 24.73 | 0.8173 | 0.3259

w/ DASC [3] 25.13 | 0.8291 | 03171 | 2474 | 0.8194 | 03279 | 2521 | 0.8314 | 0.3062 | 24.82 | 0.8223 | 0.3194
w/Zhietal. [13] | 25.13 | 0.8288 | 03174 | 2471 | 0.8172 | 03302 | 25.18 | 0.8283 | 0.3094 | 24.78 | 08174 | 0.3293
w/Liang etal. [4] | 25.14 | 0.8293 | 03139 | 2476 | 0.8207 | 0.3247 | 2523 | 0.8312 | 03111 | 24.68 | 0.8216 | 0.3081
w/ SA (ours) 2523 | 0.8337 | 0.2846 | 24.83 | 0.8264 | 02923 | 25.66 | 0.8456 | 0.2799 | 2530 | 0.8367 | 0.2867

Table 2. Evaluation results on other guided denoisers with different matching algorithms and our structure aggregation (SA) module on the
Flickr1024 Dataset under Gaussian noise (¢ = 0.2) and mixed Poisson-Gaussian noise (o = 0.02, o = 0.2).

cross-spectral stereo matching algorithms, especially in the
presence of noise. Tab. 1 lists the quantitative denoising re-
sults obtained using the warped guidance images computed
by the DASC-based stereo matching technique [3] and two
state-of-the-art unsupervised cross-modal stereo matching
networks [4, 13]. We can observe that they basically achieve
very similar PSNR, SSIM and LPIPS values than those ob-
tained using the original unaligned guidance images. There-
fore, conventional stereo matching does not bring much im-
provement to the denoising performance. Visual compar-
isons in Fig. 1 display that an inaccurate warped guidance
image cannot solve the problem of over-smoothing weak
details in the guided denoising process. In comparison, our
structure aggregation strategy can produce a structure map
that is structurally aligned with the input target image be-
fore the edges and details can be effectively transferred to
the denoising result.

To further show the effectiveness of our proposed struc-
ture aggregation strategy, we pre-align the input image pairs
using different stereo matching methods [3, 4, 13] and our
structure aggregation model. Then, we perform guided de-
noising with FGDNet [7] and MNNet [ 1 0] that are designed
for aligned situations. The quantitative results are listed in
Tab. 2. We can observe that with our structure aggregation,
both comparative guided denoisers achieve noticeable per-
formance gain, better than using other alignment methods.
Hence, our structure aggregation module can be regarded as
a plug-and-play component that can allow previous guided

denoising methods to be able to deal with more general sit-
uations.

We evaluate the denoising performance of our SANet
and compare it to the state-of-the-art single-image denois-
ers including MIRNet [11], NBNet [2], MPRNet [12],
HINet [ 1], Uformer [9] and DGUNet [6], as well as guided
denoising methods including FGDNet [7] and MNNet [10]
on the PittsStereo-RGBNIR Dataset [13], the Flickr1024
Dataset [8], and the KITTI Stereo 2015 Dataset [5]. More
visual comparisons are displayed in Fig. 2-Fig. 8. As
described in the manuscript, the target and the guidance
images from the PittsStereo-RGB Dataset are captured in
the visible and the near-infrared (NIR) bands, respectively.
Considering that they basically have very small disparities,
we further evaluate our proposed algorithm in more chal-
lenging situations on the Flickr1024 and the KITTI Stereo
2015 Datasets where the input paired images have much
larger disparities. To simulate the cross-spectral cases, the
target and the guidance images are extracted from different
channels of the RGB images. In addition, we also construct
an RGB-NIR stereo dual-camera system and evaluate the
algorithms on realistic image pairs. The corresponding vi-
sual results are displayed in Fig. 4. We can observe that,
both single-image denoisers and guided denoising models
FGDNet and MNNet inevitably over-smooth detailed con-
tents during noise removal. In comparison, our proposed
SANet can effectively restore more salient structures and
richer details according to the unaligned guidance images.
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Figure 1. Guided denoising results obtained using the warped

guidance image by DASC [3] and our estimated structure map un-
der mixed Poisson-Gaussian noise (o = 0.02, 0 = 0.2).

3. Visualization of Structure Aggregation

To better demonstrate the structure aggregation process,
we visualize the perceptual weights for a potion of the circu-
larly shifted guidance images. Denote G4 € R”*W  where
d=0,1,---, D is the shifted distance. For the d-th shifted
guidance image, its corresponding perceptual weight is de-
noted as W2 € RE*W_ Therefore, G4 © WL can be
regarded as the perceived consistent structures, where © is
the element-wise product operator.

Fig. 9 displays the visualization results on our captured
RGB-NIR stereo image pairs. The estimated structure map
is obtained by our SANet trained using the synthetic cross-
spectral image pairs from the Flickr1024 Dataset. We can
observe that, even if the test data are captured with different
cross-spectral settings, our proposed SANet still performs
well, demonstrating its good generalizability. Taking the
blue channel of the noisy target image as an example, the
structure map is estimated based on an NIR guidance image
captured with a stereo dual-camera system. Without an ex-
plicit matching process, our structure aggregation strategy
can effectively perceive the structural correlation between
the noisy target image and the shifted guidance image, and
extracts consistent contents to synthesize the structure map.
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Figure 2. Denoising results on the PittsStereo-RGBNIR Dataset under Gaussian noise (o = 0.2) obtained by the comparative denoising
methods and our SANet.
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Figure 3. Denoising results on the PittsStereo-RGBNIR Dataset under mixed Poisson-Gaussian noise (o« = 0.02, o = 0.2) obtained by
the comparative denoising methods and our SANet.
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Figure 4. Denoising results of our captured realistic RGB-NIR image pair obtained by the comparative denoising methods and out SANet.
All images are processed with tone mapping for better illustration.
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Figure 5. Denoising results on the Flickr1024 Dataset under mixed Poisson-Gaussian noise (&« = 0.02, 0 = 0.2) obtained by the
comparative denoising methods and our SANet.
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Figure 6. Denoising results on the Flickr1024 Dataset under Gaussian noise (¢ = 0.2) obtained by the comparative denoising methods and
our SANet.
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Figure 7. Denoising results on the KITTI Stereo 2015 Dataset under mixed Poisson-Gaussian noise (o« = 0.02, o = 0.2) obtained by the
comparative denoising methods and our SANet.
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Figure 8. Denoising results on the KITTI Stereo 2015 Dataset under mixed Poisson-Gaussian noise (o« = 0.02, 0 = 0.2) obtained by the
comparative denoising methods and our SANet.



Figure 9. Visualization of our structure aggregation process, including the shifted guidance images {Ga}4=0,1,-..,p and the corresponding
perceptual weights {WZ5}s—01... p.
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