
PLIKS: A Pseudo-Linear Inverse Kinematic Solver for 3D Human Body
Estimation

**Supplementary Material**

1. Introduction

In this material, we provide implementation details and
analysis of focal lengths and regularizers for our method.
We further discuss the benefits of using a solver for hu-
man pose estimation utilizing constraints. Additionally, we
present more qualitative results, to show the performance of
PLIKS and to explore its failure scenarios.

1.1. Datasets

COCO: COCO [12] is a large-scale in-the-wild 2D key-
point dataset. We use this for training. We make use
of pseudo-ground truth SMPL annotations provided by
EFT [5].
MPI-INF-3DHP: MPI-INF-3DHP is an indoor multi-view
and outdoor scene dataset for 3D human pose estimation.
We make use of SMPL multi-view fits by SPIN [10]. We
use this for training and evaluation.
Human3.6M: Human3.6M [3] is an indoor, multi-view 3D
human pose estimation dataset. We follow the standard
practice [6, 10] where subjects S1, S5, S6, S7, and S8 are
used for training while S9 and S11 are the test subjects. We
follow Protocol 2 using only the front-facing cameras.
3DPW: 3DPW [20] is a challenging outdoor benchmark for
3D pose and shape estimation. To get a fair comparison with
previous state-of-the-art [8,11], we use 3DPW training data
for 3DPW experiments. We make use of a subset of this
dataset PW3D-OCC following [8] for the occlusion bench-
mark.
AGORA: AGORA [17] is a synthetic dataset with accu-
rate SMPL models fitted to 3D scans. The test set is not
publicly available, here the evaluation is performed on the
official platform. For both training and testing, we use the
images of resolution 1280× 720.
3DOH: 3DOH [21] is an object-occluded dataset. We use
this to train and evaluate only for occlusion benchmark.
MuPoTs-3D: MuPoTs-3D [14] is a mixed indoor and out-
door multi-person dataset consisting of 20 sequences show-
ing people performing various actions and interactions. We
use this for evaluating the absolute root error.
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Figure 1. Impact on focal length on estimation errors when using
the 3DPW [20] and MPI-INF-3DHP [13] dataset.

1.2. Network Training

As the entire pipeline is differentiable, the network is
trained end-to-end. We split the training into two steps, pre-
training (ARE) and training (PLIKS) to accelerate the net-
work training speed. In pre-training, we train exclusively
with the ARE module, and optimize only with respect to
the mesh and network predicted parameters (β̃, θ̃k) by min-
imizing,

L = ω1Lθ + ω2Lβ + ω3L2d + ω4L3d + ω5LM . (1)

Following previous work [6, 10, 15], we employ standard
mesh losses to supervise the training process. Here, Lθ is
the L2 loss between the predicted pose and ground truth
(GT) pose. Similarly, Lβ is the L2 loss between the pre-
dicted shape and GT shape. L2d, L3d and LM are the L1
loss between predictions and GT 2D joint re-projection, 3D
joints and, the mesh vertex in image space respectively. To
supervise the 2D annotations, the predicted 3D joints are
projected by the weak-perspective camera c̃ as predicted by
the network.



During training we make use of the PLIKS module. Due
to the presence of the linear solver in PLIKS, we observe
numerical instability in the early stages of training, i.e. the
pixel-aligned vertex predictions are not adequately consis-
tent for the solver, making the reconstruction ill-posed. To
keep the error within bounds, we add strong shape and pose
regularizers for two epochs. In this stabilization period, the
shape regularizer ωβ exponentially decays from 1 to 0.1.
We further add a pose-constraint to the objective function
of PLIKS (Eq. (2)), such that ωθ

∑
|∆Rk| ≈ I. As a con-

sequence, the additional rotation ∆Rk obtained during the
stabilization period is constrained to be close to zero. Simi-
lar to ωβ , we decay ωθ from 1 to 0. For training, we use the
same objective function from Eq. (1) to minimize the mesh
and the analytically predicted parameters (β,θk).
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1.3. Implementation Details

PyTorch [16] is used for implementation. For all our
experiments we initialize the HRNet [18] backbone with
weights pre-trained on the MPII [1] dataset, which exhibits
faster convergence during training. We use the Adam op-
timizer [7] with a mini-batch size of 32. The learning
rate at pre-training is set to 1e−4, whereas, while training
the entire pipeline it is initialized to 5e−5. The network
is pre-trained for 20 epochs, stabilized for 2 epochs, and
then finally trained for further 30 epochs. We set the learn-
ing rate to 1e−5 while fine-tuning with the 3DPW [20] or
AGORA [17] dataset. For fine-tuning, we use the previous
pre-trained network as the starting point. This is to accel-
erate convergence and correct the 3D inaccuracies from the
pseudo-GT labels. It takes around 3-5 days to train on a
single NVIDIA Tesla V-100-16GB GPU. We set ω1, ω2,
ω3, ω4, and ω5 to 1, 0.05, 4, 8, and 4, respectively. As the
pseudo-GT labels from EFT [5], are defined with respect to
weak-perspective projection, we reduce ω1, ω2, ω4, and ω5

by a factor of 0.1 for the 2D dataset.

2. Ablations
Here we discuss the effects of shape regularizer and ef-

fects of focal length estimation.

2.1. Regularizer

To demonstrate the importance of a strong regularizer,
we perform a similar experiment (from Sec 4.1) where we
add random noise to the GT of the mesh vertices from the
3DPW [20] test set. Here we vary the shape regularizer
weights ωβ and observe the final MPJPE obtained. From
Table 1, it is evident that larger weights for ωβ is more ro-
bust to noise. However, training the network using larger

weights has its own drawbacks as shown in Figure 2. The
network forces the shape components β to always be close
to zero. As the shape β is determined by a solver, it enables
us to switch to a male, female, or neutral model seamlessly
by replacing the shape coefficients B during inference. For
our training, we set ωβ = 0.1, as this is a good mixture
between stability and shape variations.

2.2. Focal Length

We conduct experiments on the 3DPW and MPI-INF-
3DHP test sets by varying the focal lengths. As shown in
Fig. 1, PLIKS is robust to a wide range of focal lengths
when the FOV is small (e.g., 3DPW), but it suffers from
the effects of perspective warping on large focal lenghts
for wide FOV images (e.g., MPI-INF-3DHP). Using Cam-
Calib [9] on the MPI-INF-3DHP to determine the FOV and
consequently the focal length of the image, we could only
obtain a reduction in MPJPE of 72.01 mm, i.e., a drop of
just 3%. In particular, when, the ground truth camera ma-
trix is known, our approach can be expected to yield optimal
performance.

3. Qualitative Results

In this section, we show comparisons to SOTA methods
on AGORA and provide more qualitative results on various
other datasets.
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Figure 2. Effect of the regularizer weight used during training on
the shape coefficients. Picking a higher ωβ reduces the error, but
causes the network to output meshes getting progressively closer
to the identity representation. Here neutral represents the neutral
SMPL model, and gender refers to the gender-specific model on
the 3DPW [20] dataset.



Figure 3. Qualitative results from AGORA test set.

±10 mm ±20 mm ±30 mm
ωβ = 2.0 17.3 22.6 34.9
ωβ = 1.0 18.4 37.3 64.0
ωβ = 0.1 122 254 322.1

Table 1. Ground truth errors in the presence of per vertex noise
ranging from ±10mm to ±30mm and the effect of using a shape
regularizer, ωβ .

3.1. Qualitative Comparison

We display several examples of PLIKS on the AGORA
test set in Fig. 3. We use YOLO [4] for the bounding box
estimation and CamCalib [9] for the focal length estimation.
The images demonstrate that PLIKS performs better than
previous approaches, by aligning the bodies well in 3D as
well as 2D.

3.2. Inference Modification

As mentioned in the main paper, one of the strengths
of our method is the application of constraints during in-
ference. Here, we discuss a proof-of-concept for two use
cases, where we show the benefits of using a solver without
any retraining of the network. We discuss dynamic shape
and translation constraints.

Dynamic Shape Although our network was trained only
on a neutral SMPL model with 10 shape components, it
can make use of other shape models during inference if
they follow the same design principle as SMPL. As an
extreme scenario, we show the application using the kid-
SMPL model [17, 19]. The kid-SMPL is an extended ver-
sion of the SMPL model supporting children by linearly
blending the SMPL and Skinned Multi-Infant Linear Model



Figure 4. Example images with dynamic shape during inference. Set of input images, overlay and, 3D view.

(SMIL) [2] by a weighting factor α ∈ (0, 1) [17]. Here,
larger weights represents infants, while smaller weights are
associated with adults. For simplicity, we denote the kid-
SMPL model as having 11 shape components.

Qualitative results of using the kid-SMPL model on the
Relative Human (RH) dataset [19] are shown in Fig. 4. The
only modification performed was adapting the shape coeffi-
cients Bk

r in Eq. 2 from the SMPL to their kid-SMPL coun-
terparts. In that context, we further empirically set ωβ to
0.5. From the RH dataset we employ the GT age classifier,
i.e., we use SMPL for adults, and kid-SMPL for child or
infant. We observe visually satisfactory results, with suffi-
ciently reliable depth reasoning. A top-down approach [19]
or a simple age classifier could be designed to determine the
age as a future work.

Translation Constraints Previous examples of just using
dynamic shapes is not a complete solution, due to the ill-
posed nature of the problem. This is quite evident from the
fifth column of Fig. 5. As a proof-of-concept, we show the
application of translation constraints during inference. We
add a simple depth constraint to Eq. 2 as ωtt

k
0,z = ωtt

a
0,z .

Here, ta0,z is the root depth of the adult in the image, and
tk0,z is the constrained setting for the root-depth of the kids
in the image, with ωt being a weighting factor. We make
the assumption that the children in the images are standing
close to the adults. The solver optimizes the shape such
that the translation constraint is satisfied. We empirically
set ωt to 0.2. Though, strictly not comparable, we visualize
the results of BEV [19] in Fig. 5. There, all images are in
fact from the RH training set on which BEV was trained.



We quickly add that this is not a real-world solution to the
problem, but it emphasizes the importance of using con-
straints during inference or training. As future work, one
could make use of the RH dataset with the depth-level in-
formation by adding a top-down approach [19] for better
constraints.

3.3. Failure Mode

In Fig. 6, we show a few examples where PLIKS fails to
reconstruct reasonable human body poses. The failure cases
range from (a) too many people in the crop, (b) extreme
poses not seen in training, and (c) extreme occlusion.



Figure 5. Example images with translation constraints during inference. (a) Input Image, (b,c) 3D overlay from BEV [19] and PLIKS
respectively, (d) 3D view of the model from BEV [19], (e,f) 3D view of the model from PLIKS without and with using the translation
constraint.

Figure 6. Example of failure cases.



Figure 7. Additional qualitative results of PLIKS from COCO [12], MPII [1], 3DPW [20], 3DOH [21] and MuPoTs-3D [14]. Set of
challenging input images, overlay and, 3D view.
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